【題目】設(shè), ,已知處有相同的切線.

(1)求, 的解析式;

(2)求上的最小值;

(3)若對(duì), 恒成立,求實(shí)數(shù)的取值范圍.

【答案】(1); .

(2)。

(3).

【解析】試題分析:(1)先求的導(dǎo)函數(shù),再由題設(shè)得:.,從而可列方程組解得的值;

2)利用導(dǎo)數(shù)判函數(shù)的單調(diào)性,進(jìn)而求出函數(shù)上的最小值;要注意對(duì)的取值分類討論;

3)令,利用導(dǎo)數(shù)研究此函數(shù)的極值,由其極小值非負(fù)可求實(shí)數(shù)的取值范圍.

試題解析:解:(1

依題意,即

4分)

2

上遞減,在遞增

當(dāng)時(shí)

遞減,在遞增

當(dāng)時(shí)遞增

9分)

3)令

由題意時(shí)恒成立

上只可能有一個(gè)極值點(diǎn)

當(dāng)時(shí), 遞增

不合題意

當(dāng),即時(shí)符合題意

當(dāng),即時(shí)

上遞減,在上遞增;

符合題意

綜上所述實(shí)數(shù)的取值范圍是:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)當(dāng)時(shí),(i)求曲線在點(diǎn)處的切線方程;

(ii)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知sinα+cosα=,,,

(1)求sin2α和tan2α的值;

(2)求cos(α+2β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,,為其左、右頂點(diǎn),為橢圓上除,外任意一點(diǎn),若記直線斜率分別為,.

(1)求證:為定值;

(2)若橢圓的長(zhǎng)軸長(zhǎng)為4,過點(diǎn)作兩條互相垂直的直線,若恰好為與橢圓相交的弦的中點(diǎn),求與橢圓相交的弦的中點(diǎn)的橫坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,點(diǎn)P(2,0).

(I)求橢圓C的短軸長(zhǎng)與離心率;

( II)(1,0)的直線與橢圓C相交于M、N兩點(diǎn),設(shè)MN的中點(diǎn)為T,判斷|TP||TM|的大小,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域在R上的函數(shù)f(x)=|x+1|+|x﹣2|的最小值為a.
(1)求a的值;
(2)若p,q,r為正實(shí)數(shù),且p+q+r=a,求證:p2+q2+r2≥3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2017年5月14日,第一屆“一帶一路”國(guó)際高峰論壇在北京舉行,為了解不同年齡的人對(duì)“一帶一路”關(guān)注程度,某機(jī)構(gòu)隨機(jī)抽取了年齡在15-75歲之間的100人進(jìn)行調(diào)查, 經(jīng)統(tǒng)計(jì)“青少年”與“中老年”的人數(shù)之比為9:11

關(guān)注

不關(guān)注

合計(jì)

青少年

15

中老年

合計(jì)

50

50

100

(1)根據(jù)已知條件完成上面的列聯(lián)表,并判斷能否有的把握認(rèn)為關(guān)注“一帶一路”是否和年齡段有關(guān)?

(2)現(xiàn)從抽取的青少年中采用分層抽樣的辦法選取9人進(jìn)行問卷調(diào)查.在這9人中再選取3人進(jìn)行面對(duì)面詢問,記選取的3人中關(guān)注“一帶一路”的人數(shù)為X,求X的分布列及數(shù)學(xué)期望.

附:參考公式,其中

臨界值表:

0.05

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓Cx2+y2+x-6y+m=0與直線lx+2y-3=0

1)若直線l與圓C沒有公共點(diǎn),求m的取值范圍;

2)若直線l與圓C相交于P、Q兩點(diǎn),O為原點(diǎn),且OPOQ,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過橢圓的右焦點(diǎn)軸的垂線,與橢圓在第一象限內(nèi)交于點(diǎn),過作直線的垂線,垂足為

(1)求橢圓的方程;

(2)設(shè)為圓上任意一點(diǎn),過點(diǎn)作橢圓的兩條切線,設(shè)分別交圓于點(diǎn),證明:為圓的直徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案