精英家教網 > 高中數學 > 題目詳情

函數fx)=x)的反函數(   

  A.在〔,+∞)為增函數

  B.在[,+∞)為減函數

  C.在(-,0]為增函數

  D.在(-,0]為減函數

 

答案:D
提示:

函數與其反函數的圖像的增減性相同,所以(x)是減函數,定義域為f(x)的值域(-,0

 


練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

若函數 fx)=a x (a>0,a≠1 ) 的部分對應值如表:

x

-2

0

fx

0.592

1

則不等  式f-1(│x│<0)的解集是        ()

A. {x│-1<x<1}                  B. {xx<-1或x>1}         

C. {x│0<x<1}                    D. {x│-1<x<0或0<x<1}

查看答案和解析>>

科目:高中數學 來源:2013屆浙江省、蘭溪一中高二下期中理科數學試卷(解析版) 題型:解答題

(1)已知函數f(x)=x-ax+(a-1),。討論函數的單調性;       

(2).已知函數f (x)=lnx,g(x)=ex.設直線l為函數 yf (x) 的圖象上一點A(x0,f (x0))處的切線.問在區(qū)間(1,+∞)上是否存在x0,使得直線l與曲線y=g(x)也相切.若存在,這樣的x0有幾個?,若沒有,則說明理由。

 

查看答案和解析>>

科目:高中數學 來源:2014屆北京市高一上學期期中考試數學 題型:解答題

已知:函數f(x)=,x,

(1)當a=-1時,判斷并證明函數的單調性并求f(x)的最小值;

(2)若對任意x,f(x)>0都成立,試求實數a的取值范圍。

 

查看答案和解析>>

科目:高中數學 來源:2013屆黑龍江虎林高中高二下學期期中理科數學試卷(解析版) 題型:解答題

已知函數f(x)=alnx-x2+1.

(1)若曲線y=f(x)在x=1處的切線方程為4x-y+b=0,求實數a和b的值;

(2)若a<0,且對任意x1、x2∈(0,+∞),都|f(x1)-f(x2)|≥|x1-x2|,求a的取值范圍.

【解析】第一問中利用f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,

由已知得a-2=4,2-a=b,所以a=6,b=-4.

第二問中,利用當a<0時,f′(x)<0,∴f(x)在(0,+∞)上是減函數,

不妨設0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,

∴|f(x1)-f(x2)|≥|x1-x2|等價于f(x1)-f(x2)≥x2-x1

即f(x1)+x1≥f(x2)+x2,結合構造函數和導數的知識來解得。

(1)f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,

由已知得a-2=4,2-a=b,所以a=6,b=-4.

(2)當a<0時,f′(x)<0,∴f(x)在(0,+∞)上是減函數,

不妨設0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,

∴|f(x1)-f(x2)|≥|x1-x2|等價于f(x1)-f(x2)≥x2-x1,即f(x1)+x1≥f(x2)+x2,

令g(x)=f(x)+x=alnx-x2+x+1,g(x)在(0,+∞)上是減函數,

∵g′(x)=-2x+1=(x>0),

∴-2x2+x+a≤0在x>0時恒成立,

∴1+8a≤0,a≤-,又a<0,

∴a的取值范圍是

 

查看答案和解析>>

科目:高中數學 來源: 題型:

    設函數f(x)=|x+1|-|x-2|.

   (1)求不等式f(x)≥2的解集;

   (2)若不等式f(x)≤|a-2|的解集為R,求實數a的取值范圍.

查看答案和解析>>

同步練習冊答案