設(shè)點P是橢圓與圓x2+y2=3b2的一個交點,F(xiàn)1,F(xiàn)2分別是橢圓的左、右焦點,且|PF1|=3|PF2|,則橢圓的離心率為( )
A.
B.
C.
D.
【答案】分析:先由橢圓的定義和已知求出兩個焦半徑的長,利用余弦定理得關(guān)于a、c的等式,然后求得離心率.
解答:解:依據(jù)橢圓的定義:|PF1|+|PF2|=2a,又∵|PF1|=3|PF2|,
∴|PF1|=a,|PF2|=a,
∵圓x2+y2=3b2的半徑r=b,
∴三角形F1PF2中有余弦定理可得:,
,
可得7a2=8c2,得e=
故選 D.
點評:本題考查了橢圓的定義,橢圓的幾何性質(zhì),余弦定理的應(yīng)用,離心率的求法,考查計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)點P是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
與圓x2+y2=3b2的一個交點,F(xiàn)1,F(xiàn)2分別是橢圓的左、右焦點,且|PF1|=3|PF2|,則橢圓的離心率為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•惠州模擬)(理科)設(shè)橢圓M:
x2
a2
+
y2
2
=1(a>
2
)
的右焦點為F1,直線l:x=
a2
a2-2
與x軸交于點A,若
OF1
+2
AF1
=0
(其中O為坐標(biāo)原點)
(1)求橢圓M的方程;
(2)設(shè)點P是橢圓M上的任意一點,線段EF為圓N:x2+(y-2)2=1的任意一條直徑(E、F為直徑的兩個端點),求
PE
PF
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

設(shè)點P是橢圓數(shù)學(xué)公式與圓x2+y2=3b2的一個交點,F(xiàn)1,F(xiàn)2分別是橢圓的左、右焦點,且|PF1|=3|PF2|,則橢圓的離心率為


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年黑龍江省哈爾濱六中高二(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

設(shè)點P是橢圓與圓x2+y2=3b2的一個交點,F(xiàn)1,F(xiàn)2分別是橢圓的左、右焦點,且|PF1|=3|PF2|,則橢圓的離心率為( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案