設(shè)G是△ABC的重心,且56sinA•
GA
+40sinB•
GB
+35sinC•
GC
=
0
,則B為( 。
分析:利用G是三角形ABC的重心,化簡(jiǎn)條件,可得
GA
+
GB
+
GC
=
0
,從而56sinA=40sinB=35sinC,即56a=40b=35c,利用余弦定理即可得到結(jié)論.
解答:解:∵G是三角形ABC的重心∴
GA
+
GB
+
GC
=
0

GA
=-
GB
-
GC

56sinA•
GA
+40sinB•
GB
+35sinC•
GC
=
0

56sinA•(-
GB
-
GC
)+40sinB•
GB
+35sinC•
GC
=
0

(40sinB-56sinA)•
GB
+(35sinC-56sinA)•
GC
=
0

GA
GB
不共線,
∴56sinA=40sinB=35sinC
∴56a=40b=35c
∴cosB=
a2+c2-b2
2ac
=
1
2

∵0°<B<180°
∴B=60°
故選D.
點(diǎn)評(píng):本題考查向量知識(shí)的運(yùn)用,考查正弦、余弦定理的運(yùn)用,考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)G是△ABC的重心,且(56sinA)
GA
+(40sinB)
GB
+(35sinC)
GC
=
0
,則B的大小為( 。
A、15°B、30°
C、45°D、60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)G是△ABC的重心,且(sinA)•
GA
+(sinB)•
GB
+(sinC)•
GC
=
0
,則B的大小為( 。
A、45°B、60°
C、30°D、15°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)G是△ABC的重心,且(56sinA)
GA
+(40sinB)
GB
+(35sinC)
GC
=
0
,則B的大小為
60°
60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)G是△ABC的重心(即三條中線的交點(diǎn)),
AB
=
a
,
AC
=
b
.試用
a
b
表示
AG
=
1
3
a
+
1
3
b
1
3
a
+
1
3
b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)G是△ABC的重心,a,b,c分別是角A,B,C的對(duì)邊,若a
GA
+b
GB
+
3
3
c
GC
=
0
,則角A=( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案