點(diǎn)P是橢圓
x2
9
+
y2
4
=1
上的一點(diǎn),F(xiàn)1,F(xiàn)2是焦點(diǎn),且∠F1PF2=60°,則△F1PF2的面積是
 
分析:由橢圓
x2
9
+
y2
4
=1
,可得a,b,及c2=a2-b2.設(shè)|PF1|=m,|PF2|=n,則m+n=2a=6.又∠F1PF2=60°,利用余弦定理可得(2c)2=m2+n2-2mncos60°,即可得到mn,再利用△F1PF2的面積S=
1
2
mnsin60°
即可得出.
解答:解:由橢圓
x2
9
+
y2
4
=1
,可得a2=9,b2=4,c2=a2-b2=5.
∴a=3.
設(shè)|PF1|=m,|PF2|=n,則m+n=2a=6.
又∠F1PF2=60°,∴(2c)2=m2+n2-2mncos60°,
∴4×5=(m+n)2-3mn=62-3mn,解得mn=
16
3

∴△F1PF2的面積S=
1
2
mnsin60°
=
4
3
3
點(diǎn)評(píng):本題考查了橢圓的定義、標(biāo)準(zhǔn)方程及其性質(zhì)、余弦定理和三角形的面積計(jì)算公式等基礎(chǔ)知識(shí)與基本技能方法,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P(x,y)是橢圓
x2
9
+
y2
4
=1
上的動(dòng)點(diǎn).
(1)求2x+3y的取值范圍;
(2)求橢圓上的點(diǎn)到直線2x+3y+7
2
=0
的最短距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•閔行區(qū)二模)給出下列四個(gè)命題:
①如果復(fù)數(shù)z滿足|z+i|+|z-i|=2,則復(fù)數(shù)z在復(fù)平面的對(duì)應(yīng)點(diǎn)的軌跡是橢圓.
②若對(duì)任意的n∈N*,(an+1-an-1)(an+1-2an)=0恒成立,則數(shù)列{an}是等差數(shù)列或等比數(shù)列.
③設(shè)f(x)是定義在R上的函數(shù),且對(duì)任意的x∈R,|f(x)|=|f(-x)|恒成立,則f(x)是R上的奇函數(shù)或偶函數(shù).
④已知曲線C:
x2
9
-
y2
16
=1
和兩定點(diǎn)E(-5,0)、F(5,0),若P(x,y)是C上的動(dòng)點(diǎn),則||PE|-|PF||<6.
上述命題中錯(cuò)誤的個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•溫州二模)已知F1、F2是雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)與橢圓
x2
9
+
y2
5
=1
的共同焦點(diǎn),若點(diǎn)P是兩曲線的一個(gè)交點(diǎn),且△PF1F2為等腰三角形,則該雙曲線的漸近線方程是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個(gè)命題:
①如果復(fù)數(shù)z滿足|z+i|+|z-i|=2,則復(fù)數(shù)z在復(fù)平面上所對(duì)應(yīng)點(diǎn)的軌跡是橢圓.
②設(shè)f(x)是定義在R上的函數(shù),且對(duì)任意的x∈R,|f(x)|=|f(-x)|恒成立,則f(x)是R上的奇函數(shù)或偶函數(shù).
③已知曲線C:
x2
9
-
y2
16
=1
和兩定點(diǎn)E(-5,0)、F(5,0),若P(x,y)是C上的動(dòng)點(diǎn),則||PE|-|PF||<6.
④設(shè)定義在R上的兩個(gè)函數(shù)f(x)、g(x)都有最小值,且對(duì)任意的x∈R,命題“f(x)>0或g(x)>0”正確,則f(x)的最小值為正數(shù)或g(x)的最小值為正數(shù).
上述命題中錯(cuò)誤的個(gè)數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點(diǎn)P(x,y)是橢圓
x2
9
+
y2
4
=1
上的動(dòng)點(diǎn).
(1)求2x+3y的取值范圍;
(2)求橢圓上的點(diǎn)到直線2x+3y+7
2
=0
的最短距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案