設(shè)是各項都為正數(shù)的等比數(shù)列, 是等差數(shù)列,且,
(Ⅰ)求數(shù)列,的通項公式;
(Ⅱ)設(shè)數(shù)列的前項和為,求數(shù)列的前項和.
(Ⅰ)
(Ⅱ) 。
【解析】
試題分析:(Ⅰ)設(shè)數(shù)列的公比為數(shù)列的公差為
依題意得: 2分
∵ ∴,將代入得 4分
∴ 5分
(Ⅱ)由題意得
7分
令 ①
則 ②
①-②得: 9分
∴ 11分
又
∴ 13分
考點(diǎn):等差數(shù)列、等比數(shù)列的通項公式,“分組求和法”“錯位相減法”。
點(diǎn)評:中檔題,確定數(shù)列通項公式,往往利用已知條件,建立相關(guān)“元素”的方程組,達(dá)到解題目的。 “分組求和法”“裂項相消法”“錯位相減法”是高考常?疾榈臄(shù)列求和方法。本題對運(yùn)算能力要求較高。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
Sn |
1 |
S1 |
1 |
S2 |
1 |
Sn |
an2 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011屆重慶市七區(qū)高三第一次調(diào)研測試數(shù)學(xué)理卷 題型:解答題
(本小題滿分12分)
設(shè)數(shù)列的各項都為正數(shù),其前項和為,已知對任意,是和的等比中項.
(Ⅰ)證明數(shù)列為等差數(shù)列,并求數(shù)列的通項公式;
(Ⅱ)證明;
(Ⅲ)設(shè)集合,,且,若存在∈,使對滿足的一切正整數(shù),不等式恒成立,求這樣的正整數(shù)共有多少個?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年重慶市七區(qū)高三第一次調(diào)研測試數(shù)學(xué)理卷 題型:解答題
(本小題滿分12分)
設(shè)數(shù)列的各項都為正數(shù),其前項和為,已知對任意,是 和的等比中項.
(Ⅰ)證明數(shù)列為等差數(shù)列,并求數(shù)列的通項公式;
(Ⅱ)證明;
(Ⅲ)設(shè)集合,,且,若存在∈,使對滿足 的一切正整數(shù),不等式恒成立,求這樣的正整數(shù)共有多少個?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:江蘇省月考題 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)數(shù)列的各項都為正數(shù),其前項和為,已知對任意,是 和的等比中項.
(Ⅰ)證明數(shù)列為等差數(shù)列,并求數(shù)列的通項公式;
(Ⅱ)證明;<1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com