設(shè)拋物線的焦點(diǎn)為,點(diǎn),線段的中點(diǎn)在拋物線上. 設(shè)動(dòng)直線與拋物線相切于點(diǎn),且與拋物線的準(zhǔn)線相交于點(diǎn),以為直徑的圓記為圓
(1)求的值;
(2)證明:圓軸必有公共點(diǎn);
(3)在坐標(biāo)平面上是否存在定點(diǎn),使得圓恒過點(diǎn)?若存在,求出的坐標(biāo);若不存在,說明理由.
(1)  (2)見解析  (3)存在

試題分析:
(1)判斷拋物線的焦點(diǎn)位置,得到焦點(diǎn)坐標(biāo),利用中點(diǎn)坐標(biāo)公式得到FA的中點(diǎn)坐標(biāo)帶入拋物線即可求的P的值.
(2)直線與拋物線相切,聯(lián)立直線與拋物線,判別式為0即可得到k,m之間的關(guān)系,可以用k來(lái)替代m,得到P點(diǎn)的坐標(biāo),拋物線準(zhǔn)線與直線的方程可得到Q點(diǎn)的坐標(biāo),利用中點(diǎn)坐標(biāo)公式可得到PQ中點(diǎn)坐標(biāo),計(jì)算中點(diǎn)到x軸距離與圓半徑(PQ為直徑)的大小比較即可判斷圓與x軸的位置關(guān)系(點(diǎn)線距離小于或者等于半徑,即相交或者相切).
(3)由(2)可以得到PQ的坐標(biāo)(用k表示),根據(jù)拋物線對(duì)稱性知點(diǎn)軸上,設(shè)點(diǎn)坐標(biāo)為,則M點(diǎn)需滿足,即向量?jī)?nèi)積為0,即可得到M點(diǎn)的坐標(biāo),M點(diǎn)的坐標(biāo)如果為常數(shù)(不含k),即存在這樣的定點(diǎn),如若不然,則不存在.
試題解析:
(1)利用拋物線的定義得,故線段的中點(diǎn)的坐標(biāo)為,代入方程得,解得。                  2分
(2)由(1)得拋物線的方程為,從而拋物線的準(zhǔn)線方程為     3分
得方程,
由直線與拋物線相切,得                4分
,從而,即,                   5分
,解得,                     6分
的中點(diǎn)的坐標(biāo)為
圓心軸距離,
 
 
所圓與軸總有公共點(diǎn).           8分
(或 由, ,以線段為直徑的方程為:


,所圓與軸總有公共點(diǎn)).           9分
(3)假設(shè)平面內(nèi)存在定點(diǎn)滿足條件,由拋物線對(duì)稱性知點(diǎn)軸上,
設(shè)點(diǎn)坐標(biāo)為,             10分
由(2)知,
 。
得,
所以,即           13分
所以平面上存在定點(diǎn),使得圓恒過點(diǎn).            14分
證法二:由(2)知,的中點(diǎn)的坐標(biāo)為

所以圓的方程為           11分
整理得           12分
上式對(duì)任意均成立,
當(dāng)且僅當(dāng),解得            13分
所以平面上存在定點(diǎn),使得圓恒過點(diǎn).            14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的左右焦點(diǎn)分別為、,短軸兩個(gè)端點(diǎn)為、,且四邊形是邊長(zhǎng)為2的正方形.
(1)求橢圓方程;
(2)若分別是橢圓長(zhǎng)軸的左右端點(diǎn),動(dòng)點(diǎn)滿足,連接,交橢圓于點(diǎn),證明:為定值;
(3)在(2)的條件下,試問軸上是否存在異于點(diǎn)的定點(diǎn),使得以為直徑的圓恒過直線的交點(diǎn)?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓C:+=1(a>b>0)的離心率為,以原點(diǎn)為圓心,橢圓的短半軸為半徑的圓與直線x-y+=0相切,過點(diǎn)P(4,0)且不垂直于x軸直線l與橢圓C相交于A、B兩點(diǎn).
(1)求橢圓C的方程;
(2)求·的取值范圍;
(3)若B點(diǎn)關(guān)于x軸的對(duì)稱點(diǎn)是E,證明:直線AE與x軸相交于定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓,直線是直線上的線段,且是橢圓上一點(diǎn),求面積的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓:的離心率,原點(diǎn)到過點(diǎn),的直線的距離是.
(1)求橢圓的方程;
(2)若橢圓上一動(dòng)點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)為,求 的取值范圍;
(3)如果直線交橢圓于不同的兩點(diǎn),且都在以為圓心的圓上,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓C=1(a>b>0)的離心率與等軸雙曲線的離心率互為倒數(shù)關(guān)系,直線lxy=0與以原點(diǎn)為圓心, 以橢圓C的短半軸長(zhǎng)為半徑的圓相切.
(1)求橢圓C的方程;
(2)設(shè)M是橢圓的上頂點(diǎn),過點(diǎn)M分別作直線MAMB交橢圓于A,B兩點(diǎn),設(shè)兩直線的斜率分別為k1,k2,且k1k2=4,證明:直線AB過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的離心率為,短軸端點(diǎn)分別為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若,是橢圓上關(guān)于軸對(duì)稱的兩個(gè)不同點(diǎn),直線軸交于點(diǎn),判斷以線段為直徑的圓是否過點(diǎn),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

對(duì)于曲線=1,給出下面四個(gè)命題:
(1)曲線不可能表示橢圓;
(2)若曲線表示焦點(diǎn)在x軸上的橢圓,則1<;
(3)若曲線表示雙曲線,則<1或>4;
(4)當(dāng)1<<4時(shí)曲線表示橢圓,其中正確的是(      )
A.(2)(3)B.(1)(3)C.(2)(4)D.(3)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線C頂點(diǎn)為原點(diǎn),其焦點(diǎn)F(0,c)(c>0)到直線l:x-y-2=0的距離為,設(shè)P為直線l上的點(diǎn),過點(diǎn)P作拋物線C的兩條切線PA,PB,其中A,B為切點(diǎn).
(1)求拋物線C的方程;
(2)當(dāng)點(diǎn)P(x0,y0)為直線l上的定點(diǎn)時(shí),求直線AB的方程;
(3)當(dāng)點(diǎn)P在直線l上移動(dòng)時(shí),求|AF|·|BF|的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案