【題目】某中學為了解高二年級中華傳統(tǒng)文化經(jīng)典閱讀的整體情況,從高二年級隨機抽取10名學生進行了兩輪測試,并把兩輪測試成績的平均分作為該名學生的考核成績.記錄的數(shù)據(jù)如下:
1號 | 2號 | 3號 | 4號 | 5號 | 6號 | 7號 | 8號 | 9號 | 10號 | |
第一輪測試成績 | 96 | 89 | 88 | 88 | 92 | 90 | 87 | 90 | 92 | 90 |
第二輪測試成績 | 90 | 90 | 90 | 88 | 88 | 87 | 96 | 92 | 89 | 92 |
(Ⅰ)從該校高二年級隨機選取一名學生,試估計這名學生考核成績大于90 分的概率;
(Ⅱ)從考核成績大于90分的學生中再隨機抽取兩名同學,求這兩名同學兩輪測試成績均大于等于90分的概率;
(Ⅲ)記抽取的10名學生第一輪測試的平均數(shù)和方差分別為,,考核成績的平均數(shù)和方差分別為,,試比較與, 與的大小.(只需寫出結(jié)論)
【答案】(Ⅰ);(Ⅱ);(Ⅲ) , .
【解析】分析:(Ⅰ)求出這名學生兩輪考核的平均成績,可知大于等于分的有6人,利用古典概型概率公式可得結(jié)果;(Ⅱ)由(Ⅰ)知,考核成績大于等于90分的學生共6人,其成績均大于等于分共3人,利用列舉法可得人中選兩人的事件有個事件,其中這兩名同學兩輪測試成績均大于等于分的事件有個,由古典概型概率公式可得結(jié)果;(Ⅲ)根據(jù)成績的平均值以及成績的穩(wěn)定性可得結(jié)果.
詳解:(Ⅰ)這10名學生的考核成績(單位:分)分別為:
93,89.5,89,88,90,88.5,91.5,91,90.5,91.
其中大于等于90分的有1號、5號、7號、8號、9號、10號,共6人.
所以樣本中學生考核成績大于等于90分的頻率是.
從該校高二年級隨機選取一名學生,估計這名學生考核成績大于等于90分的概率為0.6.
(Ⅱ)設(shè)事件為“從考核成績大于等于90分的學生中任取2名同學,這2名同學兩輪測試成績均大于等于90分”,
由(Ⅰ)知,考核成績大于等于90分的學生共6人,其中兩輪測試成績均大于等于90分的學生有1號,8號,10號,共3人.
因此,從考核成績大于等于90分的學生中任取2名同學,
包含(1號,5號)、(1號,7號)、(1號,8號)、(1號,9號)、(1號、10號)、
(5號,7號)、(5號,8號)、(5號,9號)、(5號,10號)、(7號,8號)、(7號,9號)、(7號,10號)、(8號,9號)、(8號,10號)、(9號,10號)共15個基本事件,
而事件包含(1號,8號)、(1號、10號)、(8號,10號)共3個基本事件,
所以.
(Ⅲ) , .
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知六個直角邊均為1和的直角三角形圍成的兩個正六邊形,則該圖形繞著旋轉(zhuǎn)一周得到的幾何體的體積為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“搜索指數(shù)”是網(wǎng)民通過搜索引擎,以每天搜索關(guān)鍵詞的次數(shù)為基礎(chǔ)所得到的統(tǒng)計指標.“搜索指數(shù)”越大,表示網(wǎng)民對該關(guān)鍵詞的搜索次數(shù)越多,對該關(guān)鍵詞相關(guān)的信息關(guān)注度也越高.下圖是2017年9月到2018年2月這半年中,某個關(guān)鍵詞的搜索指數(shù)變化的走勢圖.
根據(jù)該走勢圖,下列結(jié)論正確的是( )
A. 這半年中,網(wǎng)民對該關(guān)鍵詞相關(guān)的信息關(guān)注度呈周期性變化
B. 這半年中,網(wǎng)民對該關(guān)鍵詞相關(guān)的信息關(guān)注度不斷減弱
C. 從網(wǎng)民對該關(guān)鍵詞的搜索指數(shù)來看,去年10月份的方差小于11月份的方差
D. 從網(wǎng)民對該關(guān)鍵詞的搜索指數(shù)來看,去年12月份的平均值大于今年1月份的平均值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在衡陽市“創(chuàng)全國文明城市”(簡稱“創(chuàng)文”)活動中,市教育局對本市A,B,C,D四所高中學校按各校人數(shù)分層抽樣,隨機抽查了200人,將調(diào)查情況進行整理后制成下表:
學校 | A | B | C | D |
抽查人數(shù) | 10 | 15 | 100 | 75 |
“創(chuàng)文”活動中參與的人數(shù) | 9 | 10 | 80 | 49 |
假設(shè)每名高中學生是否參與“創(chuàng)文”活動是相互獨立的
(1)若本市共8000名高中學生,估計C學校參與“創(chuàng)文”活動的人數(shù);
(2)在上表中從A,B兩校沒有參與“創(chuàng)文”活動的同學中隨機抽取2人,求恰好A,B兩校各有1人沒有參與“創(chuàng)文”活動的概率;
(3)在隨機抽查的200名高中學生中,進行文明素養(yǎng)綜合素質(zhì)測評(滿分為100分),得到如上的頻率分布直方圖,其中.求a,b的值,并估計參與測評的學生得分的中位數(shù).(計算結(jié)果保留兩位小數(shù)).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2018年是中國改革開放的第40周年,為了充分認識新形勢下改革開放的時代性,某地的民調(diào)機構(gòu)隨機選取了該地的100名市民進行調(diào)查,將他們的年齡分成6段:,并繪制了如圖所示的頻率分布直方圖.
(1)現(xiàn)從年齡在內(nèi)的人員中按分層抽樣的方法抽取8人,再從這8人中隨機抽取3人進行座談,用表示年齡在內(nèi)的人數(shù),求的分布列和數(shù)學期望;
(2)若用樣本的頻率代替概率,用隨機抽樣的方法從該地抽取20名市民進行調(diào)查,其中有名市民的年齡在的概率為.當最大時,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)x3+ax2+bx,且f′(﹣1)=0.
(1)試用含a的代數(shù)式表示b;
(2)求f(x)的單調(diào)區(qū)間;
(3)令a=﹣1,設(shè)函數(shù)f(x)在x1、x2(x1<x2)處取得極值,記點M(x1,f(x1)),N(x2,f(x2)).證明:線段MN與曲線f(x)存在異于M,N的公共點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(,,),和是函數(shù)的圖象與軸的2個相鄰交點的橫坐標,且當時,取得最大值2.
(1)求,,的值;
(2)將函數(shù)的圖象上的每一點的橫坐標變?yōu)樵瓉淼?/span>倍(縱坐標不變),得到函數(shù)的圖象,再將函數(shù)的圖象向右平移個單位,得到函數(shù)的圖象,求函數(shù)在區(qū)間上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線的參數(shù)方程為(為參數(shù)),以平面直角坐標系的原點為極點,軸的正半軸為極軸建立極坐標系,橢圓的極坐標方程為.
(1)求直線的普通方程(寫成一般式)和橢圓的直角坐標方程(寫成標準方程);
(2)若直線與橢圓相交于,兩點,且與軸相交于點,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com