如圖,是等邊三角形,,,將沿折疊到的位置,使得

(1)求證:;
(2)若,分別是,的中點(diǎn),求二面角的余弦值.

(1)見解析;(2).

解析試題分析:(1)根據(jù)已知條件可得以及,有直線與平面垂直的判定定理可得,再根據(jù)直線與平面垂直的性質(zhì)定理可得;(2)有邊的關(guān)系,設(shè),則,再由線段,,互相垂直,以三邊所在直線為軸建立空間直角坐標(biāo)系,然后求出平面的法向量為以及平面的一個(gè)法向量是,將所求二面角的余弦值問題轉(zhuǎn)化為求這兩個(gè)法向量的夾角的余弦值問題.
試題解析:(1)證明:∵,∴,
又∵,且,
,

.
(2)∵是等邊三角形,
,
不妨設(shè),則,
又∵,分別為、的中點(diǎn),
由此以為原點(diǎn),,,所在直線為軸建立空間直角坐標(biāo)系.

則有,,,
,.
設(shè)平面的法向量為
,即,
,則,
.
又平面的一個(gè)法向量是,
,
∴二面角的余弦值為.                  .12分
考點(diǎn):1.直線與平面垂直的判定定理;2.直線與平面垂直的性質(zhì)定理;3.二面角;4.平面的法向量;5.空間向量的數(shù)量積及夾角

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

在長方體中,,,、 分別為、的中點(diǎn).

(1)求證:平面;
(2)求證:平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,長方體中點(diǎn).

(1)求證:;
(2)在棱上是否存在一點(diǎn),使得平面?若存在,求的長;若不存在,說明理由;
(3)若二面角的大小為,求的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

正方形ADEF與梯形ABCD所在平面互相垂直,,,點(diǎn)M在線段EC上且不與E,C重合.

(Ⅰ)當(dāng)點(diǎn)M是EC中點(diǎn)時(shí),求證:平面ADEF;
(Ⅱ)當(dāng)平面BDM與平面ABF所成銳二面角的余弦值為時(shí),求三棱錐M BDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,兩座建筑物AB,CD的底部都在同一個(gè)水平面上,且均與水平面垂直,它們的高度分別是9m和15m,從建筑物AB的頂部A看建筑物CD的張角

(1)求BC的長度;
(2)在線段BC上取一點(diǎn)P(點(diǎn)P與點(diǎn)B,C不重合),從點(diǎn)P看這兩座建筑物的張角分別為,,問點(diǎn)P在何處時(shí),最小?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

右圖是一個(gè)直三棱柱(以為底面)被一平面所截得到的幾何體,截面為.已知,,,

(1)設(shè)點(diǎn)的中點(diǎn),證明:平面;
(2)求二面角的大;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

平行四邊形中,,,以為折線,把折起,使平面平面,連結(jié).

(Ⅰ)求證:;
(Ⅱ)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在如圖所示的幾何體中,四邊形是菱形,是矩形,平面⊥平面,,的中點(diǎn).

(Ⅰ)求證://平面;
(Ⅱ)在線段上是否存在點(diǎn),使二面角的大小為?若存在,求出的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在直三棱柱中,,點(diǎn)D是AB的中點(diǎn),

求證:(1); (2)平面

查看答案和解析>>

同步練習(xí)冊答案