設α,β為互不相同的兩個平面,m,n為互不重合的兩條直線,且m⊥α,m⊥β則“n⊥α”是n⊥β的( )條件
A.充分不必要
B.必要不充分
C.充分必要
D.既不充分也不必要
【答案】分析:先判斷p⇒q與q⇒p的真假,再根據(jù)充要條件的定義給出結論;也可判斷命題p與命題q所表示的范圍,再根據(jù)“誰大誰必要,誰小誰充分”的原則,判斷命題p與命題q的關系.
解答:解:若n⊥α,則∵m⊥α,則m∥n,又∵m⊥β則n⊥β
若n⊥β,則∵m⊥β,則m∥n,又∵m⊥α則n⊥α
由充要條件的定義可得,“n⊥α”是n⊥β的充分必要條件
故選C
點評:判斷充要條件的方法是:
①若p⇒q為真命題且q⇒p為假命題,則命題p是命題q的充分不必要條件;
②若p⇒q為假命題且q⇒p為真命題,則命題p是命題q的必要不充分條件;
③若p⇒q為真命題且q⇒p為真命題,則命題p是命題q的充要條件;
④若p⇒q為假命題且q⇒p為假命題,則命題p是命題q的既不充分也不必要條件.
⑤判斷命題p與命題q所表示的范圍,再根據(jù)“誰大誰必要,誰小誰充分”的原則,判斷命題p與命題q的關系.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

8、設α,β,γ為互不相同的三個平面,l、m、n為不重合的三條直線,則l⊥β的一個充分條件是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

5、設α,β為互不相同的兩個平面,m,n為互不重合的兩條直線,且m⊥α,m⊥β則“n⊥α”是n⊥β的( 。l件

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設α,β,γ為互不相同的三個平面,l、m、n為不重合的三條直線,則l⊥β的一個充分條件是( 。
A.α⊥γ,β⊥γ,α∩γ=lB.α⊥β,α∩β=m,l⊥m
C.m⊥α,m⊥β,l⊥αD.α⊥β,β⊥γ,l⊥α

查看答案和解析>>

科目:高中數(shù)學 來源:安徽模擬 題型:單選題

設α,β為互不相同的兩個平面,m,n為互不重合的兩條直線,且m⊥α,m⊥β則“n⊥α”是n⊥β的(  )條件
A.充分不必要B.必要不充分
C.充分必要D.既不充分也不必要

查看答案和解析>>

同步練習冊答案