精英家教網 > 高中數學 > 題目詳情
某班共有學生40人,將一次數學考試成績(單位:分)繪制成頻率分布直方圖,如圖所示.
(Ⅰ)請根據圖中所給數據,求出a的值;
(Ⅱ)從成績在[50,70)內的學生中隨機選3名學生,求這3名學生的成績都在[60,70)內的概率;
(Ⅲ)為了了解學生本次考試的失分情況,從成績在[50,70)內的學生中隨機選取3人的成績進行分析,用X表示所選學生成績在[60,70)內的人數,求X的分布列和數學期望.

【答案】分析:(I)根據頻率分布直方圖,結合頻率之和為1,看出小矩形的高的值即得a的值.
(II)設“從成績在[50,70)的學生中隨機選3名,且他們的成績都在[60,70)內”為事件A.先算出學生成績在[50,60)內的和在[60,70)內的人數,根據成績在[50,70)內的學生有11人,而且這些事件的可能性相同,根據概率公式計算,那么即可求得事件A的概率.
(III)根據題意看出變量X的可能取值,結合變量對應的事件和等可能事件的概率公式,寫出變量的概率.列出分布列和期望值.
解答:解:(Ⅰ)根據頻率分布直方圖中的數據,可得,
所以 a=0.03.                                             …(2分)
(Ⅱ)學生成績在[50,60)內的共有40×0.05=2人,在[60,70)內的共有40×0.225=9人,
成績在[50,70)內的學生共有11人.                            …(4分)
設“從成績在[50,70)的學生中隨機選3名,且他們的成績都在[60,70)內”為事件A,
…(5分)
.                                         …(7分)
所以選取的3名學生成績都在[60,70)內的概率為
(Ⅲ)依題意,X的可能取值是1,2,3.                            …(8分);        
;
.                                    …(10分)
所以X的分布列為
ξ123
P
…(11分)
.                           …(13分)
點評:此題考查了對頻率分布直方圖的掌握情況,考查的是概率的求法,考查離散型隨機變量的分布列和期望,本題解題的關鍵是利用等可能事件的概率公式做出變量對應的概率值.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2012•豐臺區(qū)一模)某班共有學生40人,將一次數學考試成績(單位:分)繪制成頻率分布直方圖,如圖所示.
(Ⅰ)請根據圖中所給數據,求出a的值;
(Ⅱ)從成績在[50,70)內的學生中隨機選3名學生,求這3名學生的成績都在[60,70)內的概率;
(Ⅲ)為了了解學生本次考試的失分情況,從成績在[50,70)內的學生中隨機選取3人的成績進行分析,用X表示所選學生成績在[60,70)內的人數,求X的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源:北京市豐臺區(qū)2012屆高三下學期統(tǒng)一練習(一)數學理科試題 題型:044

某班共有學生40人,將一次數學考試成績(單位:分)繪制成頻率分布直方圖,如圖所示.

(Ⅰ)請根據圖中所給數據,求出a的值;

(Ⅱ)從成績在[50,70)內的學生中隨機選3名學生,求這3名學生的成績都在[60,70)內的概率;

(Ⅲ)為了了解學生本次考試的失分情況,從成績在[50,70)內的學生中隨機選取3人的成績進行分析,用X表示所選學生成績在[60,70)內的人數,求X的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源:2012-2013學年廣東省高三上學期期中考試理科數學試卷(解析版) 題型:解答題

某班共有學生40人,將一次數學考試成績(單位:分)繪制成頻率分布直方圖,如圖所示。

(1)請根據圖中所給數據,求出的值;

(2)從成績在[50,70)內的學生中隨機選3名學生,求這3名學生的成績都在[60,70)內的概率;

(3)為了了解學生本次考試的失分情況,從成績在[50,70)內的學生中隨機選取3人的成績進行分析,用X表示所選學生成績在[ 60,70)內的人數,求X的分布列和數學期望.

 

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某班共有學生40人,將一次數學考試成績(單位:分)繪制成頻率分布直方圖,如圖所示.
(Ⅰ)請根據圖中所給數據,求出a的值;
(Ⅱ)從成績在[50,70)內的學生中隨機選3名學生,求這3名學生的成績都在[60,70)內的概率;
(Ⅲ)為了了解學生本次考試的失分情況,從成績在[50,70)內的學生中隨機選取3人的成績進行分析,用X表示所選學生成績在[60,70)內的人數,求X的分布列和數學期望.

查看答案和解析>>

同步練習冊答案