【題目】已知函數(shù),是實(shí)數(shù)常數(shù))的圖像上的一個(gè)最高點(diǎn)是,與該最高點(diǎn)最近的一個(gè)最低點(diǎn)是.

(1)求函數(shù)的解析式及其單調(diào)遞增區(qū)間;

(2)在中,角所對(duì)的邊分別為,且,角的取值范圍是區(qū)間。當(dāng)時(shí),試求函數(shù)的取值范圍。

【答案】(1);(2)

【解析】

(1)先根據(jù)配角公式化簡(jiǎn)函數(shù)解析式,再根據(jù)條件得周期解得,代入最高點(diǎn)坐標(biāo)解得c,最后根據(jù)正弦函數(shù)性質(zhì)求增區(qū)間,(2)先根據(jù)向量數(shù)量積解得角B,再根據(jù)三角形內(nèi)角關(guān)系求角的取值范圍,最后根據(jù)正弦函數(shù)性質(zhì)求函數(shù)值域.

(1)∵,∴.

分別是函數(shù)圖像上相鄰的最高點(diǎn)和最低點(diǎn),

,解得.

,解得.

∴函數(shù)的單調(diào)遞增區(qū)間是.

(2)∵在中,,∴.

,即. ∴.

當(dāng)時(shí),,考察正弦函數(shù)的圖像,

可知,.∴,即函數(shù)的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為Ⅰ)求曲線的直角坐標(biāo)方程,并指出其表示何種曲線;(Ⅱ)設(shè)直線與曲線交于兩點(diǎn),若點(diǎn)的直角坐標(biāo)為,試求當(dāng)時(shí),的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)求的定義域;

2)求函數(shù)在區(qū)間內(nèi)的零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),為常數(shù))在內(nèi)有兩個(gè)極值點(diǎn),

(1)求實(shí)數(shù)的取值范圍;

(2)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公園為了美化環(huán)境和方便顧客,計(jì)劃建造一座圓弧形拱橋,已知該橋的剖面如圖所示,共包括圓弧形橋面和兩條長(zhǎng)度相等的直線型路面,橋面跨度的長(zhǎng)不超過米,拱橋所在圓的半徑為米,圓心在水面上,且所在直線與圓分別在連結(jié)點(diǎn)處相切.設(shè),已知直線型橋面每米修建費(fèi)用是元,弧形橋面每米修建費(fèi)用是.

1)若橋面(線段、和弧)的修建總費(fèi)用為元,求關(guān)于的函數(shù)關(guān)系式;

2)當(dāng)為何值時(shí),橋面修建總費(fèi)用最低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若曲線處的切線的方程為,求實(shí)數(shù)的值;

2)設(shè),若對(duì)任意兩個(gè)不等的正數(shù),都有恒成立,求實(shí)數(shù)的取值范圍;

3)若在上存在一點(diǎn),使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的左、右焦點(diǎn)分別為, ,且離心率為 為橢圓上任意一點(diǎn),當(dāng)時(shí), 的面積為1.

(1)求橢圓的方程;

(2)已知點(diǎn)是橢圓上異于橢圓頂點(diǎn)的一點(diǎn),延長(zhǎng)直線, 分別與橢圓交于點(diǎn) ,設(shè)直線的斜率為,直線的斜率為,求證: 為定值.

【答案】(1);(2)

【解析】試題分析:(1)設(shè)由題,由此求出,可得橢圓的方程;

(2)設(shè),

當(dāng)直線的斜率不存在時(shí),可得

當(dāng)直線的斜率不存在時(shí),同理可得.

當(dāng)直線的斜率存在時(shí),,

設(shè)直線的方程為,則由消去通過運(yùn)算可得

,同理可得,由此得到直線的斜率為,

直線的斜率為,進(jìn)而可得.

試題解析:(1)設(shè)由題,

解得,則,

橢圓的方程為.

(2)設(shè), ,

當(dāng)直線的斜率不存在時(shí),設(shè),則,

直線的方程為代入,可得,

, ,則,

直線的斜率為,直線的斜率為,

,

當(dāng)直線的斜率不存在時(shí),同理可得.

當(dāng)直線、的斜率存在時(shí),,

設(shè)直線的方程為,則由消去可得:

,

,則,代入上述方程可得

,

,則

,

設(shè)直線的方程為,同理可得,

直線的斜率為,

直線的斜率為,

.

所以,直線的斜率之積為定值,即.

型】解答
結(jié)束】
21

【題目】已知函數(shù), ,在處的切線方程為.

(1)求,

(2)若,證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知奇函數(shù)在定義域上單調(diào)遞增,若對(duì)任意的成立,則實(shí)數(shù)的最小值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若定義在R上的偶函數(shù)滿足,且時(shí), ,則函數(shù)的零點(diǎn)個(gè)數(shù)是( )

A. 6個(gè)B. 8個(gè)C. 2個(gè)D. 4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案