【題目】已知函數f(x)=x|x-4| (x∈R)
(1)用分段形式寫出函數f(x)的表達式,并作出函數f(x)的圖象;
(2) 根據圖象指出f(x)的單調區(qū)間,并寫出不等式f(x)>0的解集;
(3) 若h(x)=f(x)-k有三個零點,寫出k的取值范圍.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=axex , 其中常數a≠0,e為自然對數的底數. (Ⅰ)求函數f(x)的單調區(qū)間;
(Ⅱ)當a=1時,求函數f(x)的極值;
(Ⅲ)若直線y=e(x﹣ )是曲線y=f(x)的切線,求實數a的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,角A,B,C所對的分別為a,b,c,且acosB=(3c﹣b)cosA.
(1)若asinB=2 ,求b;
(2)若a=2 ,且△ABC的面積為 ,求△ABC的周長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知.
(1)求函數的最小正周期和對稱軸方程;
(2)若,求的值域.
【答案】(1)對稱軸為,最小正周期;(2)
【解析】
(1)利用正余弦的二倍角公式和輔助角公式將函數解析式進行化簡得到,由周期公式和對稱軸公式可得答案;(2)由x的范圍得到,由正弦函數的性質即可得到值域.
(1)
令,則
的對稱軸為,最小正周期;
(2)當時,,
因為在單調遞增,在單調遞減,
在取最大值,在取最小值,
所以,
所以.
【點睛】
本題考查正弦函數圖像的性質,考查周期性,對稱性,函數值域的求法,考查二倍角公式以及輔助角公式的應用,屬于基礎題.
【題型】解答題
【結束】
21
【題目】已知等比數列的前項和為,公比,,.
(1)求等比數列的通項公式;
(2)設,求的前項和.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ex(x2+ax+a). (I)當a=1時,求函數f(x)的單調區(qū)間;
(Ⅱ)若關于x的不等式f(x)≤ea在[a,+∞)上有解,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,AB⊥BC,BA=BC,BD是邊AC上的高,沿BD將△ABC折起,當三棱錐A﹣BCD的體積最大時,該三棱錐外接球表面積為( )
A. 12πB. 24πC. 36πD. 48π
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(Ⅰ)如表所示是某市最近5年個人年平均收入表節(jié)選.求y關于x的回歸直線方程,并估計第6年該市的個人年平均收入(保留三位有效數字).
年份x | 1 | 2 | 3 | 4 | 5 |
收入y(千元) | 21 | 24 | 27 | 29 | 31 |
其中,, 附1:= ,=﹣
(Ⅱ)下表是從調查某行業(yè)個人平均收入與接受專業(yè)培訓時間關系得到2×2列聯(lián)表:
受培時間一年以上 | 受培時間不足一年 | 總計 | |
收入不低于平均值 | 60 | 20 | |
收入低于平均值 | 10 | 20 | |
總計 | 100 |
完成上表,并回答:能否在犯錯概率不超過0.05的前提下認為“收入與接受培訓時間有關系”.
附2:
P(K2≥k0) | 0.50 | 0.40 | 0.10 | 0.05 | 0.01 | 0.005 |
k0 | 0.455 | 0.708 | 2.706 | 3.841 | 6.635 | 7.879 |
附3:
K2=.(n=a+b+c+d)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=lnx﹣x3與g(x)=x3﹣ax的圖象上存在關于x軸的對稱點,則實數a的取值范圍為( )
A.(﹣∞,e)
B.(﹣∞,e]
C.
D.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com