【題目】已知關(guān)于的不等式().
(1)若不等式的解集為或,求, 的值;
(2)求不等式()的解集.
【答案】(1) ;(2) ①當(dāng)時, ,∴或
②當(dāng)時, ,∴ ③當(dāng)時, ,∴
④當(dāng)時, ,∴.
【解析】試題分析:(1)由不等式的解集為或,可得a>0,同時1,b是一元二次方程ax2﹣3x+2>0的兩個實數(shù)根,利用韋達(dá)定理即可得出;
(2)不等式ax2﹣3x+2>5﹣ax化為ax2+(a﹣3)x﹣3>0,即(ax﹣3)(x+1)>0.對a分類討論:當(dāng)a=0時;當(dāng)a>0或a<﹣3時;當(dāng)﹣3<a<0時,解出即可.
試題解析:
(1)將代入,則
∴不等式為即
∴不等式解集為或∴
(2)不等式為,即
當(dāng)時,原不等式解集為
當(dāng)時,方程的根為, ,
∴①當(dāng)時, ,∴或
②當(dāng)時, ,∴
③當(dāng)時, ,∴
④當(dāng)時, ,∴
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 和 是平面內(nèi)互相垂直的兩條直線,它們的交點為A,異于點A的兩動點B、C分別在 、 上,且BC= ,則過A、B、C三點圓的面積為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC中,A(1,-4),B(6,6),C(-2,0).求:
(1)△ABC中平行于BC邊的中位線所在直線的一般式方程和截距式方程;
(2)BC邊的中線所在直線的一般式方程,并化為截距式方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)點P(x,y)是曲線a|x|+b|y|=1(a≥0,b≥0)上任意一點,其坐標(biāo)(x,y)均滿足 ,則 a+b取值范圍為( )
A.(0,2]
B.[1,2]
C.[1,+∞)
D.[2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個棱錐的側(cè)棱長都相等,那么這個棱錐( )
A.一定是正棱錐
B.一定不是正棱錐
C.是底面為圓內(nèi)接多邊形的棱錐
D.是底面為圓外切多邊形的棱錐
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), ,其中.
(1)當(dāng)時,求函數(shù)的值域;
(2)若對任意,均有,求的取值范圍;
(3)當(dāng)時,設(shè),若的最小值為,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C的中心在原點,離心率等于 ,它的一個短軸端點恰好是拋物線x2=8 y的焦點.
(1)求橢圓C的方程;
(2)已知P(2,m)、Q(2,﹣m)(m>0)是橢圓上的兩點,A,B是橢圓上位于直線PQ兩側(cè)的動點,
①若直線AB的斜率為 ,求四邊形APBQ面積的最大值;
②當(dāng)A、B運動時,滿足∠APQ=∠BPQ,試問直線AB的斜率是否為定值,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求函數(shù)的單調(diào)遞減區(qū)間;
(2)當(dāng)時,設(shè)函數(shù).若函數(shù)在區(qū)間上有兩個零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)命題p:(4x﹣3)2≤1;命題q:x2﹣(2a+1)x+a(a+1)≤0,若¬p是¬q的必要不充分條件,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com