【題目】甲、乙兩人各射擊一次,擊中目標的概率分別是.假設兩人射擊是否擊中目標,相互之間沒有影響;每次射擊是否擊中目標,相互之間沒有影響.

(1)求甲射擊4次,至少1次未擊中目標的概率;

(2)求兩人各射擊4次,甲恰好擊中目標2次且乙恰好擊中目標3次的概率.

【答案】(1) .

(2) .

【解析】分析:(I)設甲射擊5次,至少1次未擊中目標為事件,則其對立事件“4次均擊中目標”,通過間接法,由n次獨立重復事件恰好發(fā)生k次的概率公式計算可得答案;Ⅱ)設兩人各射擊4次,甲恰好擊中目標2次,且乙恰好擊中目標3為事件B,分別計算甲恰好擊中目標2次的概率與乙恰好擊中目標3次的概率,再由獨立事件的概率的計算公式,計算可得答案.

詳解:

(1)設“甲射擊4次,至少1次未擊中目標”為事件

則其對立事件為“4次均擊中目標”,

(2)設“甲恰好擊中目標2次且乙恰好擊中目標3次”為事件,

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某學校為調查該校學生每周使用手機上網的時間,隨機收集了若干位學生每周使用手機上網的時間的樣本數(shù)據(單位:小時),將樣本數(shù)據分組為,繪制了如下圖所示的頻率分布直方圖,已知內的學生有5人.

(1)求樣本容量,并估計該校學生每周平均使用手機上網的時間;

(2)將使用手機上網的時間在內定義為“長時間看手機”;使用手機上網的時間在內定義為“不長時間看手機”.已知在樣本中有位學生不近視,其中“不長時間看手機”的有位學生.請將下面的列聯(lián)表補充完整,并判斷能否在犯錯誤的概率不超過的前提下認為該校學生長時間看手機與近視有關.

近視

不近視

合計

長時間看手機

不長時間看手機

15

合計

25

參考公式和數(shù)據:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線上的任意一點到兩定點、距離之和為,直線交曲線兩點,為坐標原點.

1)求曲線的方程;

2)若不過點且不平行于坐標軸,記線段的中點為,求證:直線的斜率與的斜率的乘積為定值;

3)若直線過點,求面積的最大值,以及取最大值時直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C: =1(a>b>0),e= ,其中F是橢圓的右焦點,焦距為2,直線l與橢圓C交于點A、B,點A,B的中點橫坐標為 ,且 (其中λ>1).
(1)求橢圓C的標準方程;
(2)求實數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|x﹣1|+|x+a|,
(1)當a=﹣2時,求不等式f(x)<g(x)的解集;
(2)若a>﹣1,且當x∈[﹣a,1]時,不等式f(x)≤g(x)有解,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,點A(0,3),直線l:y=2x﹣4.設圓C的半徑為1,圓心在l上.

(1)若圓心C也在直線y=x﹣1上,過點A作圓C的切線,求切線的方程;
(2)若圓C上存在點M,使MA=2MO,求圓心C的橫坐標a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的定義域為,部分對應值如下表,又知的導函數(shù)的圖象如下圖所示:

-1

0

4

5

1

2

2

1

則下列關于的命題:

為函數(shù)的一個極大值點;

②函數(shù)的極小值點為2;

③函數(shù)上是減函數(shù);

④如果當時,的最大值是2,那么的最大值為4;

⑤當時,函數(shù)有4個零點.

其中正確命題的序號是__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓經過,三點.

(1)求圓的標準方程;

(2)若過點N 的直線被圓截得的弦AB的長為,求直線的傾斜角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知a>0,函數(shù)
(1)記f(x)在區(qū)間[0,4]上的最大值為g(a),求g(a)的表達式;
(2)是否存在a使函數(shù)y=f(x)在區(qū)間(0,4)內的圖象上存在兩點,在該兩點處的切線互相垂直?若存在,求出a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案