數(shù)列{an}滿足:a1=5,an+1-an=
2(an+1+an)+15
,數(shù)列{bn}的前n項和Sn滿足:Sn=2(1-bn).
(1)證明:數(shù)列{an+1-an}是一個等差數(shù)列,并求出數(shù)列{an}的通項公式;
(2)求數(shù)列{bn}的通項公式,并求出數(shù)列{anbn}的最大項.
解 (1)令n=1得a2-5=
2(a2+5)+15
,解得a2=12,
由已知得(an+1-an2=2(an+1+an)+15        ①
(an+2-an+12=2(an+2+an+1)+15     ②
將②-①得(an+2-an)(an+2-2an+1+an)=2(an+2-an),
由于數(shù)列{an}單調(diào)遞增,所以an+2-an≠0,于是
an+2-2an+1+an=2,即(an+2-an+1)-(an+1-an)=2,
所以{an+1-an}是首項為7,公差為2的等差數(shù)列,于是
an+1-an=7+2(n-1)=2n+5,所以
an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=(2n+3)+(2n+1)+…+7+5=n(n+4).
(2)在 Sn=2(1-bn)中令n=1得b1=2(1-b1),解得b1=
2
3

∵Sn=2(1-bn),Sn+1=2(1-bn+1),相減得bn+1=-2bn+1+2bn,即3bn+1=2bn,
∴{bn}是首項和公比均為
2
3
的等比數(shù)列,
∴bn=(
2
3
n
從而anbn=n(n+4)(
2
3
n
設(shè)數(shù)列{anbn}的最大項為akbk,則有
k(k+4)(
2
3
k≥(k+1)(k+5)(
2
3
k+1,且k(k+4)(
2
3
k≥(k-1)(k+3)(
2
3
k-1
所以k2≥10,且k2-2k-9≤0,因為k是自然數(shù),解得k=4.
所以數(shù)列{anbn}的最大項為a4b4=
512
81
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}滿足a1=a,an+1=can+1-c(n∈N*),其中a,c為實數(shù),且c≠0.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)a=
1
2
,c=
1
2
bn=n(1-an)(n∈N*)
,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}滿足a1=a,an+1=
an+3
2
,n=1,2,3,….
(Ⅰ)若an+1=an,求a的值;
(Ⅱ)當(dāng)a=
1
2
時,證明:an
3
2
;
(Ⅲ)設(shè)數(shù)列{an-1}的前n項之積為Tn.若對任意正整數(shù)n,總有(an+1)Tn≤6成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•天津模擬)設(shè)數(shù)列{an}滿足a1=a,an+1=can+1-c(n∈N*),其中a,c為實數(shù),且c≠0.
(1)求證:a≠1時數(shù)列{an-1}是等比數(shù)列,并求an;
(2)設(shè)a=
1
2
c=
1
2
,bn=n(1-an)(n∈N*)
,求數(shù)列{bn}的前n項和Sn;
(3)設(shè)a=
3
4
,c=-
1
4
,cn=
3+an
2-an
(n∈N*),記dn=c2n-c2n-1(n∈N*)
,設(shè)數(shù)列{dn}的前n項和為Tn,求證:對任意正整數(shù)n都有Tn
5
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•大連二模)已知a為實數(shù),數(shù)列{an}滿足a1=a,當(dāng)n≥2時,an=
an-1-4 (an-1>4)
5-an-1 (an-1≤4)

(I)當(dāng)a=200時,填寫下列表格;
N 2 3 51 200
an
(II)當(dāng)a=200時,求數(shù)列{an}的前200項的和S200;
(III)令b n=
an
(-2)n
,Tn=b1+b2…+bn求證:當(dāng)1<a<
5
3
時,T n
5-3a
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知常數(shù)a、b都是正整數(shù),函數(shù)f(x)=
x
bx+1
(x>0),數(shù)列{an}滿足a1=a,
1
an+1
=f(
1
an
)
(n∈N*
(1)求數(shù)列{an}的通項公式;
(2)若a=8b,且等比數(shù)列{bn}同時滿足:①b1=a1,b2=a5;②數(shù)列{bn}的每一項都是數(shù)列{an}中的某一項.試判斷數(shù)列{bn}是有窮數(shù)列或是無窮數(shù)列,并簡要說明理由;
(3)對問題(2)繼續(xù)探究,若b2=am(m>1,m是常數(shù)),當(dāng)m取何正整數(shù)時,數(shù)列{bn}是有窮數(shù)列;當(dāng)m取何正整數(shù)時,數(shù)列{bn}是無窮數(shù)列,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案