設數(shù)列{an}的前n項和Sn=na+n(n-1)b,(n=1,2,…),a、b是常數(shù)且b≠0.
(1)證明:{an}是等差數(shù)列.
(2)證明:以(an,-1)為坐標的點Pn(n=1,2,…)都落在同一條直線上,并寫出此直線的方程.
(3)設a=1,b=,C是以(r,r)為圓心,r為半徑的圓(r>0),求使得點P1、P2、P3都落在圓C外時,r的取值范圍.
(1)證明略 (2)證明略(3)r的取值范圍是(0,1)∪(1,-)∪(4+,+∞)
由條件,得a1=S1=a,當n≥2時,
有an=Sn-Sn-1=[na+n(n-1)b]-[(n-1)a+(n-1)(n-2)b]=a+2(n-1)b.
因此,當n≥2時,有an-an-1=[a+2(n-1)b]-[a+2(n-2)b]=2b.
所以{an}是以a為首項,2b為公差的等差數(shù)列.
(2)證明:∵b≠0,對于n≥2,有
∴所有的點Pn(an,-1)(n=1,2,…)都落在通過P1(a,a-1)且以為斜率的直線上。 此直線方程為y-(a-1)= (x-a),即x-2y+a-2=0.
(3)解: 當a=1,b=時,Pn的坐標為(n,),使P1(1,0)、P2(2, )、P3(3,1)都落在圓C外的條件是
由不等式①,得r≠1
由不等式②,得r<-或r>+
由不等式③,得r<4-或r>4+
再注意到r>0,1<-<4-=+<4+
故使P1、P2、P3都落在圓C外時,r的取值范圍是(0,1)∪(1,-)∪(4+,+∞).
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
3 |
2 |
3 |
2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
3 |
2 |
1 |
2 |
1 |
S1 |
1 |
S2 |
1 |
Sn |
10 |
9 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
|
Sn |
5•2n |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com