(2009•盧灣區(qū)二模)不等式
.
x+120
xx-1x
321
.
≥0的解為
2-
3
≤x≤2+
3
2-
3
≤x≤2+
3
分析:利用三階矩陣的化簡,轉化為二階矩陣,再根據(jù)法則,可得一元二次不等式,解之即可.
解答:解:根據(jù)三階矩陣的化簡可得:(x+1)
.
x-1x
21
.
-2
.
0x
31
.
≥0

即x2-4x+1≤0
2-
3
≤x≤2+
3

故答案為(2-
3
,2+
3
)
點評:本題的考點是三階矩陣,主要考查三階矩陣的化簡,考查一元二次不等式的解法,關鍵是合理地將不等式轉化,熟記方法尤為重要.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2009•盧灣區(qū)二模)設數(shù)列{an}的前n項之和為Sn,若Sn=
1
12
(an+3)2
(n∈N*),則{an}(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•盧灣區(qū)二模)在平面直角坐標系中,若O為坐標原點,則A、B、C三點在同一直線上的充要條件為存在惟一的實數(shù)λ,使得
OC
=λ•
OA
+(1-λ)•
OB
成立,此時稱實數(shù)λ為“向量
OC
關于
OA
OB
的終點共線分解系數(shù)”.若已知P1(3,1)、P2(-1,3),且向量
OP3
是直線l:x-y+10=0的法向量,則“向量
OP3
關于
OP1
OP2
的終點共線分解系數(shù)”為
-1
-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•盧灣區(qū)二模)在△ABC中,設角A、B、C所對的邊分別是a、b、c,若b2+c2=a2+
2
bc
,且a=
2
b
,則∠C=
12
12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•盧灣區(qū)二模)二項式(x+
1
x
)6
的展開式中的常數(shù)項為
15
15

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•盧灣區(qū)二模)若函數(shù)f(x)=2sin2x-2
3
sinxsin(x-
π
2
)
能使得不等式|f(x)-m|<2在區(qū)間(0, 
3
)
上恒成立,則實數(shù)m的取值范圍是
(1,2]
(1,2]

查看答案和解析>>

同步練習冊答案