【題目】設圓的圓心為A,直線l過點B(1,0)且與x軸不重合,l交圓A于C,D兩點,過B作AC的平行線交AD于點E.
(I)證明為定值,并寫出點E的軌跡方程;
(II)設點E的軌跡為曲線C1,直線l交C1于M,N兩點,過B且與l垂直的直線與圓A交于P,Q兩點,求四邊形MPNQ面積的取值范圍.
科目:高中數學 來源: 題型:
【題目】已知圓.
(1)若直線過點且被圓截得的弦長為2,求直線的方程;
(2)從圓外一點向圓引一條切線,切點為為坐標原點,滿足,求點的軌跡方程及的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知, 分別為橢圓: 的左、右焦點,點在橢圓上.
(Ⅰ)求的最小值;
(Ⅱ)設直線的斜率為,直線與橢圓交于, 兩點,若點在第一象限,且,求面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2018年9月24日,阿貝爾獎和菲爾茲獎雙料得主、英國著名數學家阿蒂亞爵士宣布自己證明了黎曼猜想,這一事件引起了數學屆的震動。在1859年的時候,德國數學家黎曼向科學院提交了題目為《論小于某值的素數個數》的論文并提出了一個命題,也就是著名的黎曼猜想。在此之前,著名數學家歐拉也曾研究過這個問題,并得到小于數字的素數個數大約可以表示為的結論。若根據歐拉得出的結論,估計1000以內的素數的個數為_________(素數即質數,,計算結果取整數)
A. 768 B. 144 C. 767 D. 145
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若從裝有個紅球和個黑球的口袋內任取個球,則下列為互斥的兩個事件是( )
A.“至少有一個黑球”與“都是黑球”B.“一個紅球也沒有”與“都是黑球”
C.“至少有一個紅球”與“都是紅球”D.“恰有個黑球”與“恰有個黑球”
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若數列{an}是公差為2的等差數列,數列{bn}滿足b1=1,b2=2,且anbn+bn=nbn+1.
(1)求數列{an},{bn}的通項公式;
(2)設數列{cn}滿足,數列{cn}的前n項和為Tn,若不等式(-1)nλ<Tn+對一切n∈N*恒成立,求實數λ的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,、是海岸線、上的兩個碼頭,為海中一小島,在水上旅游線上.測得,,到海岸線、的距離分別為,.
(1)求水上旅游線的長;
(2)海中 ,且處的某試驗產生的強水波圓,生成小時時的半徑為.若與此同時,一艘游輪以小時的速度自碼頭開往碼頭,試研究強水波是否波及游輪的航行?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com