已知,如圖四棱錐P-ABCD中,底面ABCD是平行四邊形,PG⊥平面ABCD,垂足為G,G在AD上,且AG=GD,BG⊥GC,GB=GC=2,E是BC的中點(diǎn),四面體P-BCG的體積為.
(1)求異面直線GE與PC所成的角;
(2)求點(diǎn)D到平面PBG的距離;
(3)若F點(diǎn)是棱PC上一點(diǎn),且DF⊥GC,求的值.
解:(1)由已知,∴PG=4. 在平面ABCD內(nèi),過(guò)C點(diǎn)作CH//EG,交AD于H,連結(jié)PH,則∠PCH(或其補(bǔ)角)就是異面直線GE與PC所成的角.在△PCH中,,由余弦定理得,cos∠PCH=∴異面直線GE與PC所成的角為arccos (2)∵PG⊥平面ABCD,PG平面PBG∴平面PBG⊥平面ABCD 在平面ABCD內(nèi),過(guò)D作DK⊥BG,交BG延長(zhǎng)線于K,則DK⊥平面PBG ∴DK的長(zhǎng)就是點(diǎn)D到平面PBG的距離. 在△DKG,DK=DGsin45°= ∴點(diǎn)D到平面PBG的距離為. (3)在平面ABCD內(nèi),過(guò)D作DM⊥GC,M為垂足,連結(jié)MF,又因?yàn)镈F⊥GC ∴GC⊥平面MFD,∴GC⊥FM. 由平面PGC⊥平面ABCD,∴FM⊥平面ABCD,∴FM//PG. 由GM⊥MD,得GM=GD·cos45°=.
|
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:044
已知,如圖四棱錐P—ABCD中,底面ABCD是平行四邊形,PG⊥平面ABCD,垂足為G,G在AD上,且,BG⊥GC,GB=GC=2,E是BC的中點(diǎn),四面體P—BCG的體積為.
(Ⅰ)求異面直線GE與PC所成的角;
(Ⅱ)求點(diǎn)D到平面PBG的距離;
(Ⅲ)若F點(diǎn)是棱PC上一點(diǎn),且DF⊥GC,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:數(shù)學(xué)教研室 題型:044
(Ⅰ)求異面直線GE與PC所成的角;
(Ⅱ)求點(diǎn)D到平面PBG的距離;
(Ⅲ)若F點(diǎn)是棱PC上一點(diǎn),且DF⊥GC,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知,如圖四棱錐P—ABCD中,底面ABCD是平行四邊形,PG⊥平面ABCD,垂足為G,G在AD上,且AG=GD,BG⊥GC,GB=GC=2,E是BC的中點(diǎn),四面體P—BCG的體積為.
(Ⅰ)求異面直線GE與PC所成的角;
(Ⅱ)求點(diǎn)D到平面PBG的距離;
(Ⅲ)若F點(diǎn)是棱PC上一點(diǎn),且DF⊥GC,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013屆北京市高二上學(xué)期期中考試?yán)砜茢?shù)學(xué) 題型:解答題
((本題滿(mǎn)分14分)已知,如圖四棱錐P—ABCD中,底面ABCD是平行四邊形,PG⊥平面ABCD,垂足為G,G在AD上,且AG=GD,BG⊥GC,GB=GC=2,E是BC的中點(diǎn),四面體P—BCG的體積為.(Ⅰ)求異面直線GE與PC所成角的余弦;(Ⅱ)求點(diǎn)D到平面PBG的距離;(Ⅲ)若F點(diǎn)是棱PC上一點(diǎn),且DF⊥GC,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com