【題目】下列函數(shù)中,在區(qū)間(0,1)上是增函數(shù)的是(
A.y=|x|
B.y=3﹣x
C.y=
D.y=﹣x2+4

【答案】A
【解析】解:由題意可知:
對A:y=|x|= ,易知在區(qū)間(0,1)上為增函數(shù),故正確;
對B:y=3﹣x,是一次函數(shù),易知在區(qū)間(0,1)上為減函數(shù),故不正確;
對C:y= ,為反比例函數(shù),易知在(﹣∞,0)和(0,+∞)為單調(diào)減函數(shù),所以函數(shù)在(0,1)上為減函數(shù),故不正確;
對D:y=﹣x2+4,為二次函數(shù),開口向下,對稱軸為x=0,所以在區(qū)間(0,1)上為減函數(shù),故不正確;
故選A.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用函數(shù)單調(diào)性的判斷方法的相關(guān)知識可以得到問題的答案,需要掌握單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個(gè)自變量,且x1<x2;②判定f(x1)與f(x2)的大;③作差比較或作商比較.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在[﹣2,2]上的偶函數(shù)g(x),當(dāng)x≥0時(shí),g(x)單調(diào)遞減,若g(1﹣m)﹣g(m)<0,則實(shí)數(shù)m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y2=﹣x與直線y=k(x+1)(k≠0)相交于A、B兩點(diǎn),O是坐標(biāo)原點(diǎn).
(1)當(dāng)k= 時(shí),求|AB|的長;
(2)求證無論k為何值都有OA⊥OB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|loga|x﹣1||(a>0,a≠1),若x1<x2<x3<x4 , 且f(x1)=f(x2)=f(x3)=f(x4),則 + + + =

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓 過點(diǎn),其左、右焦點(diǎn)分別為,離心率, 是橢圓右準(zhǔn)線上的兩個(gè)動(dòng)點(diǎn),且

1)求橢圓的方程;

2)求的最小值;

3)以為直徑的圓是否過定點(diǎn)?請證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐中,PA⊥平面ABCD,底面ABCD是邊長為a的菱形,∠BAD=120°,PA=b.

(1)求證:平面PBD⊥平面PAC;
(2)設(shè)AC與BD交于點(diǎn)O,M為OC中點(diǎn),若二面角O﹣PM﹣D的正切值為2 ,求a:b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中,在其定義域內(nèi)既是奇函數(shù)又是增函數(shù)的是(
A.y=
B.y=x2
C.y=x3
D.y=sinx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)A={x|x2+(p+2)x+1=0,x∈R},若A∩R+=,求實(shí)數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)是定義域?yàn)镽的偶函數(shù),當(dāng)x≥0時(shí),f(x)=x2﹣4x,那么當(dāng)x<0時(shí),f(x)= , 不等式f(x+2)<5的解集是

查看答案和解析>>

同步練習(xí)冊答案