設(shè){ an}為等比數(shù)列,{bn}為等差數(shù)列,且b1=0,cn=an+bn,若{ cn}是1,1,2,…,求數(shù)列{ cn}的前10項(xiàng)和.
分析:依題意:c1=a1-b1=1,由b1=0,知a1=1,設(shè)bn=(n-1)d,an=qn-1,由c2=a2+b2,c3=a3+b3,知1=d+q,2=2d+q2,解得q=2,d=-1.所以a n=2 n-1(n∈N*),bn=1-n (n∈N*),由此能求出數(shù)列{ cn}的前10項(xiàng)和.
解答:解:依題意:c1=a1+b1=1,
∵b1=0,
∴a1=1,
設(shè) bn=b1+(n-1)d=(n-1)d(n∈N*),
an=a1•qn-1=qn-1,(n∈N*
∵c2=a2+b2,
c3=a3+b3,
∴1=d+q,
2=2d+q2,
解得:q=0,d=1,或q=2,d=-1
∵q≠0,
∴q=2,d=-1.
∴an=2n-1(n∈N*),
bn=1-n (n∈N*),
∴c1+c2+…+c10=(a1+a2+…+a10)+(b1+b2+…+b10
=
1-(1-210)
1-2
+
10•(0+1-10)
2

=210-1-10
=1024-46
=978
∴數(shù)列{ cn}的前10項(xiàng)和為978.
點(diǎn)評:本題首先考查等差數(shù)列、等比數(shù)列的基本量、通項(xiàng),結(jié)合含兩個(gè)變量的不等式的處理問題,對數(shù)學(xué)思維的要求比較高,有一定的探索性.綜合性強(qiáng),難度大,易出錯.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè){an}為等比數(shù)例,Tn=na1+(n-1)a2…+2an-1+an,已知T1=1,T2=4,
(1)求數(shù)列{an}的首項(xiàng)和公比;
(2)求數(shù)列{Tn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年貴州省遵義四中高三(上)第二次月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

設(shè){an}為等比數(shù)例,Tn=na1+(n-1)a2…+2an-1+an,已知T1=1,T2=4,
(1)求數(shù)列{an}的首項(xiàng)和公比;
(2)求數(shù)列{Tn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年貴州省遵義四中高三(上)第二次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

設(shè){an}為等比數(shù)例,Tn=na1+(n-1)a2…+2an-1+an,已知T1=1,T2=4,
(1)求數(shù)列{an}的首項(xiàng)和公比;
(2)求數(shù)列{Tn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高三數(shù)學(xué)復(fù)習(xí)(第6章 數(shù)列):6.3 等差數(shù)列、等比數(shù)列(二)(解析版) 題型:解答題

設(shè){an}為等比數(shù)例,Tn=na1+(n-1)a2…+2an-1+an,已知T1=1,T2=4,
(1)求數(shù)列{an}的首項(xiàng)和公比;
(2)求數(shù)列{Tn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2000年廣東省高考數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè){an}為等比數(shù)例,Tn=na1+(n-1)a2…+2an-1+an,已知T1=1,T2=4,
(1)求數(shù)列{an}的首項(xiàng)和公比;
(2)求數(shù)列{Tn}的通項(xiàng)公式.

查看答案和解析>>

同步練習(xí)冊答案