已知各項(xiàng)不為0的等差數(shù)列{an},滿足2a3-a12=0,a1=d,數(shù)列{bn}是等比數(shù)列,且b13=a2,b1=a1則b6b8


  1. A.
    72
  2. B.
    4
  3. C.
    8
  4. D.
    16
A
分析:由2a3-a12=0,a1=d,可得2(a1+2d)-a12=0,由此求得 a1=d=6,an =6n.再由b13=a2,b1=a1,可得 b6b8 =b1•b13=a1•a2 ,運(yùn)算求得結(jié)果.
解答:∵各項(xiàng)不為0的等差數(shù)列{an},滿足2a3-a12=0,a1=d,∴2(a1+2d)-a12=0,
即 2(3a1))-a12=0,∴a1=d=6,an =6n.
又∵數(shù)列{bn}是等比數(shù)列,且b13=a2=12,b1=a1 =6,
∴b6b8 =b1•b13=a1•a2=6×12=72,
故選A.
點(diǎn)評:本題主要考查等差數(shù)列的定義和性質(zhì),等差數(shù)列的通項(xiàng)公式,以及等比數(shù)列的定義和性質(zhì)的應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知各項(xiàng)不為0的等差數(shù)列{an}滿足2a3-a72+2a11=0,數(shù)列{bn}是等比數(shù)列,且b7=a7,則b5b9=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知各項(xiàng)不為0的等差數(shù)列{an},滿足2a3-a12=0,a1=d,數(shù)列{bn}是等比數(shù)列,且b13=a2,b1=a1則b6b8( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知各項(xiàng)不為0的等差數(shù)列{an}滿足2a2-a72+2a12=0,數(shù)列{bn}是等比數(shù)列,且b7=a7,則b3b11等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知各項(xiàng)不為0的等差數(shù)列{an}滿足a4-2
a
2
7
+3a8=0,數(shù)列{bn}是等比數(shù)列,且b7=a7,則b2b8b11等于( 。
A、1B、2C、4D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知各項(xiàng)不為0的等差數(shù)列{an}滿足a4-2
a
2
7
+3a8=0,數(shù)列{bn}是等比數(shù)列,且b7=a7,則b2b12等于( 。
A、1B、2C、4D、8

查看答案和解析>>

同步練習(xí)冊答案