【題目】已知函數(shù),記
在點(diǎn)
處的切線為
.
(1)當(dāng)時(shí),求證:函數(shù)
的圖像(除切點(diǎn)外)均為切線
的下方;
(2)當(dāng)時(shí),求
的最小值.
【答案】(1)見解析;(2)
【解析】
(1)求得f(x)的導(dǎo)數(shù),考慮極值點(diǎn)以及函數(shù)的凹凸性,即可得證;
(2)討論a<0,a=0,a>1,a=1,0<a<1時(shí),函數(shù)h(x)=f(x)﹣2lnx的導(dǎo)數(shù)和單調(diào)性,最值,即可得到所求g(x)的最小值.
(1)設(shè)切線方程為
記
.
,
,
,
,
在
上單調(diào)遞減.
,
,
在
上單調(diào)遞增,
,
,
在
上單調(diào)遞減.
∴,即
,當(dāng)且僅當(dāng)
時(shí)取“
”.
故命題成立
(2).
設(shè),
,
1)當(dāng)時(shí),
,則
在
上單調(diào)遞減,且
.
∴,
在
上單調(diào)遞增.
∴
2)當(dāng)時(shí),
,
設(shè),
,
有兩根
,
,
,
,不妨令
,
,
,即
,
在
上單調(diào)遞減,
,
,即
,
在
上單調(diào)遞增,
①當(dāng),即
,
,
在
上單調(diào)遞增.
,∴
;
②當(dāng),即
時(shí),
,
,
在
上單調(diào)遞減,在
上單調(diào)遞增,
,
,
存在使得
,
∴.
綜上可得.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個(gè)命題:
①函數(shù)是奇函數(shù)且在定義域上是單調(diào)遞增函數(shù);
②函數(shù)有兩個(gè)零點(diǎn),則
;
③函數(shù),則
的解集為
;
④函數(shù)的單調(diào)遞減區(qū)間為
.
其中正確命題的序號(hào)為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD是邊長(zhǎng)為2的正方形,ADPM是梯形,AM∥DP且,
,
分別為
的中點(diǎn).
(I)證明:平面
;
(II) 求三棱錐的體積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩人同時(shí)各接受了600個(gè)零件的加工任務(wù),甲比乙每分鐘加工的數(shù)量多,兩人同時(shí)開始加工,加工過程中甲因故障停止一會(huì)后又繼續(xù)按原速加工,直到他們完成任務(wù).如圖表示甲比乙多加工的零件數(shù)量y(個(gè))與加工時(shí)間x(分)之間的函數(shù)關(guān)系,A點(diǎn)橫坐標(biāo)為10,B點(diǎn)坐標(biāo)為,C點(diǎn)橫坐標(biāo)為105.則甲每分鐘加工的數(shù)量是_______,點(diǎn)D的坐標(biāo)是_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】是個(gè)循環(huán)小數(shù),
表示
的小數(shù)點(diǎn)后第
位開始,連續(xù)
位上的數(shù)字之積.證明存在自然數(shù)
、
,對(duì)任意的
、
,均有
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列的前
項(xiàng)和為
,且滿足
,
.
(1)求數(shù)列的通項(xiàng)公式及前
項(xiàng)和
;
(2)求數(shù)列的前
項(xiàng)和
;
(3)若,如果對(duì)任意
,都有
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角三棱柱中,
、
分別為
、
的中點(diǎn),
,
.
(1)求證:平面
;
(2)求證:平面平面
;
(3)若直線和平面
所成角的正弦值等于
,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:
過點(diǎn)
,離心率為
.
(1)求橢圓的方程;
(2),
是過點(diǎn)
且互相垂直的兩條直線,其中
交圓
于
,
兩點(diǎn),
交橢圓
于另一個(gè)點(diǎn)
,求
面積取得最大值時(shí)直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)舉行優(yōu)惠促銷活動(dòng),顧客僅可以從以下兩種優(yōu)惠方案中選擇一種.
方案一:每滿100元減20元;
方案二:滿100元可抽獎(jiǎng)一次.具體規(guī)則是從裝有2個(gè)紅球、2個(gè)白球的箱子隨機(jī)取出3個(gè)球(逐個(gè)有放回地抽�。媒Y(jié)果和享受的優(yōu)惠如下表:(注:所有小球僅顏色有區(qū)別)
紅球個(gè)數(shù) | 3 | 2 | 1 | 0 |
實(shí)際付款 | 7折 | 8折 | 9折 | 原價(jià) |
(1)該商場(chǎng)某顧客購(gòu)物金額超過100元,若該顧客選擇方案二,求該顧客獲得7折或8折優(yōu)惠的概率;
(2)若某顧客購(gòu)物金額為180元,選擇哪種方案更劃算?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com