7.在△ABC中,已知$c=\sqrt{3},b=1,C={120°}$
(1)求∠B和∠A;
(2)求△ABC的面積S.

分析 (1)由已知及正弦定理可得sinB=$\frac{1}{2}$,利用大邊對(duì)大角可得B為銳角,解得B,A的值.
(2)根據(jù)三角形的面積公式即可求值.

解答 解:(1)∵$c=\sqrt{3},b=1,C={120°}$,
∴由正弦定理可得:sinB=$\frac{bsinC}{c}$=$\frac{1×sin120°}{\sqrt{3}}$=$\frac{1}{2}$,
∵c>b,可得B為銳角,解得B=30°,A=180°-C-B=30°.
(2)△ABC的面積S=$\frac{1}{2}$bcsinA=$\frac{1}{2}×1×\sqrt{3}×sin30°$=$\frac{\sqrt{3}}{4}$.

點(diǎn)評(píng) 本題主要考查了正弦定理,大邊對(duì)大角,三角形面積公式的綜合應(yīng)用,考查了計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.“|x|>|y|”是“x>y”的既非充分也非必要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.三棱柱的側(cè)棱垂直于底面,所有的棱長(zhǎng)都為2$\sqrt{3}$,頂點(diǎn)都在一個(gè)球面上,則該球的體積為( 。
A.$4\sqrt{3}π$B.$\frac{{28\sqrt{7}π}}{3}$C.$8\sqrt{6}π$D.$\frac{{32\sqrt{7}π}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.設(shè)集合A={1,2,3},B={2,4},則A∩B={2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知集合A={x|x2-2x-3<0},則A=( 。
A.{x|x>1}B.{x|-1<x<3}C.{x|1<x<3}D.{x|-1<x<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.計(jì)算:
(1)${({\frac{1}{125}})^{-\frac{2}{3}}}×{5^{-1}}÷{({\frac{1}{16}})^{\frac{1}{4}}}$;
(2)$\frac{1}{2}$lg$\frac{32}{9}$-$\frac{4}{3}$lg$\sqrt{8}$+lg$\sqrt{45}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若f(x)=x2+a(a為常數(shù)),$f(\sqrt{2})=3$,則a的值為( 。
A.-2B.2C.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.a(chǎn)=log${\;}_{\frac{1}{3}}$2,b=($\frac{1}{3}$)0.2,c=2${\;}^{\frac{1}{3}}$,則(  )
A.b<a<cB.c<b<aC.c<a<bD.a<b<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)a∈R,函數(shù)f(x)=x|x-a|-a,若對(duì)任意的x∈[2,3],f(x)≥0恒成立,則( 。
A.a≤1或a≥$\frac{9}{2}$B.a≤$\frac{4}{3}$或a≥$\frac{7}{2}$C.a≤1或a≥$\frac{7}{2}$D.a≤$\frac{4}{3}$或a≥$\frac{9}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案