已知函數(shù)
(1)求函數(shù)的最小正周期及單調(diào)遞增區(qū)間;
(2)在中,A、B、C分別為三邊所對的角,若,求的最大值.
(1),函數(shù)的單調(diào)遞增區(qū)間為;(2)因此的最大值為.
解析試題分析:(1)將函數(shù)的解析式第一、三項結(jié)合,利用二倍角的余弦函數(shù)公式化簡,第二項利用二倍角的正弦函數(shù)公式化簡,合并后提取,再利用兩角和與差的正弦函數(shù)公式及特殊角的三角函數(shù)值化為一個角的正弦函數(shù),找出的值,代入周期公式,即可求出函數(shù)的最小正周期,由正弦函數(shù)的遞增區(qū)間列出關(guān)于的不等式,求出不等式的解集即可得到的遞增區(qū)間;(2)由及確定出的的解析式,變形后利用特殊角的三角函數(shù)值求出的度數(shù),可得出的值,再由的值,利用余弦定理列出關(guān)系式,將與的值代入,利用完全平方公式變形后,再利用基本不等式即可求出的最大值.
試題解析:(1)
, 3分
所以函數(shù)的最小正周期為. 4分
由得
所以函數(shù)的單調(diào)遞增區(qū)間為. 6分
(2)由可得,又,所以。8分
由余弦定理可得,即又,所以,故,當且僅當,即時等號成立
因此的最大值為. 12分
考點:解三角形;三角函數(shù)的化簡求值;三角函數(shù)的周期性及其求法;正弦函數(shù)的單調(diào)性.
科目:高中數(shù)學(xué) 來源: 題型:解答題
函數(shù)f(x)=Asin +1(A>0,ω>0)的最大值為3,其圖象相鄰兩條對稱軸之間的距離為.
(1)求函數(shù)f(x)的解析式;
(2)設(shè)α∈,f=2,求α的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)向量a=(sin x,sin x),b=(cos x,sin x),x∈.
(1)若|a|=|b|,求x的值;
(2)設(shè)函數(shù)f(x)=a·b,求f(x)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=2sin ωx·cos ωx+2cos2ωx-(其中ω>0),且函數(shù)f(x)的周期為π.
(1)求ω的值;
(2)將函數(shù)y=f(x)的圖象向右平移個單位長度,再將所得圖象各點的橫坐標縮小到原來的倍(縱坐標不變)得到函數(shù)y=g(x)的圖象,求函數(shù)g(x)在上的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=sin ωx-sin2+(ω>0)的最小正周期為π.
(1)求ω的值及函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)當x∈時,求函數(shù)f(x)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)的周期為.
(1)若,求它的振幅、初相;
(2)在給定的平面直角坐標系中作出該函數(shù)在的圖像;
(3)當時,根據(jù)實數(shù)的不同取值,討論函數(shù)的零點個數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com