15.設(shè)函數(shù)f(x)的定義域為R,對任意實數(shù)x、y都有f(x+y)=f(x)+f(y),當x>0時f(x)<0且f(3)=-4.
(1)證明:函數(shù)f(x)為奇函數(shù);
(2)證明:函數(shù)f(x)在(-∞,+∞)上為減函數(shù).
(3)求f(x)在區(qū)間[-9,9]上的最大值與最小值.

分析 (1)由已知中對于任意實數(shù)x,y都有f(x+y)=f(x)+f(y)成立,我們可以得到設(shè)x=y=0,則f(0)=0,再令y=-x可得f(-x)=-f(x),進而根據(jù)函數(shù)奇偶性的定義得到結(jié)論f(x)為奇函數(shù),
(2)再利用函數(shù)單調(diào)性的定義由x>0時,有f(x)>0,結(jié)合對于任意實數(shù)x,y都有f(x+y)=f(x)+f(y)成立,判斷出函數(shù)的單調(diào)性,
(3)根據(jù)單調(diào)性,以及f(3)=-4,得到f(x)在[-9,9]上有最大值和最小值.

解答 (1)證明:令x=y=0知f(0)=0,
令x+y=0知f(x)+f(-x)=0,
∴f(x)為奇函數(shù).
(2)證明:任取兩個自變量x1,x2且-∞<x1<x2<+∞,
則f(x2)-f(x1)=f(x2-x1),
∵x2>x1,∴x2-x1>0知f(x2-x1)<0,即f(x2)-f(x1)<0,
故f(x2)<f(x1),
∴f(x)在(-∞,+∞)上是減函數(shù).
(3)解:∵f(x)在(-∞,+∞)上是減函數(shù)
∴f(x)在[-9,9]上有最大值和最小值                
最小值為f(9)=f(6)+f(3)=f(3)+f(3)+f(3)=3f(3)=-12;
最大值為f(-9)=-f(9)=12.

點評 本題考查的知識點是抽象函數(shù),函數(shù)單調(diào)性與性質(zhì),是對函數(shù)性質(zhì)及應用的綜合考查,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

5.設(shè)定義在(0,+∞)的單調(diào)函數(shù)f(x),對任意的x∈(0,+∞)都有f[f(x)-log2x]=6.若x0是方程f(x)-$\frac{1}{xln2}$=4的一個解,且x0∈(a,a+1)(a∈N+),則實數(shù)a的值( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.如果實數(shù)x,y滿足x2+y2=4,那么$\frac{y-2}{x+3}$的最小值是( 。
A.-$\frac{12}{5}$B.-1C.-$\frac{5}{12}$D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.對于函數(shù)f(x)與g(x),如果對任意x∈D,都有|f(x)-g(x)|≤1成立,則稱f(x)與g(x)是區(qū)間D上的“親密函數(shù)”.設(shè)函數(shù)f(x)=log4(x-m),g(x)=log4$\frac{1}{x-3m}$,區(qū)間D為[m+2,m+3].
(1)若f(x)與g(x)在區(qū)間[m+2,m+3]上都有意義,求實數(shù)m的取值范圍.
(2)若f(x)與g(x)是區(qū)間[m+2,m+3]上的“親密函數(shù)”,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.某海輪以30公里/小里的速度航行,在A點測得海面上油井P在南偏東60°,向北航行40分鐘后到達B點,測得油井P在南偏東30°,海輪改為北偏東60°的航向再行駛40分鐘到達C點,求
①PC間的距離;
②在點C測得油井的方位角是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.下列各圖中,可表示函數(shù)y=f(x)的圖象的只可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知$a={log_3}\frac{1}{2},b={2^{0.01}},c=ln\frac{1}{2}$,則a,b,c的大小關(guān)系為(  )
A.b>a>cB.b>c>aC.a>c>bD.a>b>c

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.設(shè)全集為U=R,集合A={x|(x+3)(x-6)≤0},B={x|log2(x+2)<4}.
(1)求如圖陰影部分表示的集合;
(2)已知C={x|2a<x<a+1},若C⊆B,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知圓C的方程為x2+(y-4)2=4,點O是坐標原點,直線l:y=kx與圓C交于M,N兩點.
(1)求k的取值范圍;
(2)求弦MN中點G的軌跡方程,并求出軌跡的長度;
(3)設(shè)Q(m,n)是線段MN上的點,且$\frac{2}{{|OQ{|^2}}}=\frac{1}{{|OM{|^2}}}+\frac{1}{{|ON{|^2}}}$,請將n表示為m的函數(shù),并求其定義域.

查看答案和解析>>

同步練習冊答案