分析 可畫出圖形,根據(jù)余弦定理即可求出cosA的值,從而可求出$\overrightarrow{CA}•\overrightarrow{AB}$的值,而$\overrightarrow{AB}•\overrightarrow{BC}+\overrightarrow{BC}•\overrightarrow{CA}=(\overrightarrow{AB}-\overrightarrow{AC})•\overrightarrow{BC}$=$-{\overrightarrow{BC}}^{2}$,這樣便可求出原式的值.
解答 解:如圖,
在△ABC中,AB=4,BC=5,CA=6,根據(jù)余弦定理得:
cosA=$\frac{C{A}^{2}+A{B}^{2}-B{C}^{2}}{2CA•AB}=\frac{36+16-25}{2×6×4}=\frac{9}{16}$;
∴$\overrightarrow{AB}•\overrightarrow{BC}+\overrightarrow{BC}•\overrightarrow{CA}+\overrightarrow{CA}•\overrightarrow{AB}$=$(\overrightarrow{AB}+\overrightarrow{CA})•\overrightarrow{BC}+\overrightarrow{CA}•\overrightarrow{AB}$
=$(\overrightarrow{AB}-\overrightarrow{AC})•\overrightarrow{BC}-\overrightarrow{AC}•\overrightarrow{AB}$
=$-{\overrightarrow{BC}}^{2}-|\overrightarrow{AC}||\overrightarrow{AB}|cosA$
=$-25-6×4×\frac{9}{16}$
=$-\frac{77}{2}$.
故答案為:$-\frac{77}{2}$.
點評 考查余弦定理,向量減法的幾何意義,相反向量的概念,以及數(shù)量積的運算及計算公式.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 結(jié)論正確 | B. | 小前提錯誤 | C. | 推理形式錯誤 | D. | 大前提錯誤 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{2}}{2}$ | B. | 1 | C. | $\sqrt{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-2,1) | B. | (-1,2) | C. | (-∞,1)∪(-2,+∞) | D. | (-∞,-2)∪(1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{4}$ | B. | $\frac{5}{6}$ | C. | $\frac{9}{10}$ | D. | $\frac{10}{11}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2011×2010 | B. | 2012×2011 | C. | 20122 | D. | 2012×2013 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com