4.如圖所示,正方體ABCD-A1B1C1D1的棱長為1,線段B1D1上有兩個動點E、F,且$EF=\frac{{\sqrt{2}}}{2}$,則下列結(jié)論中正確的是①②③④.
①EF∥平面ABCD;
②平面ACF⊥平面BEF;
③三棱錐E-ABF的體積為定值;
④存在某個位置使得異面直線AE與BF成角30o

分析 ①,由EF∥平面ABCD判定;
②,動點E、F運動過程中,AC始終垂直面BEF;
③,三棱錐E-ABF的底△BEF的面積為定值,A到面BEF的距離為定值,故其體積為定值,;
④,令上底面中心為O,當(dāng)E與D1重合時,此時點F與O重合,則兩異面直線所成的角是∠OBC1,可求解∠OBC1=300

解答 解:如圖:
對于①,∵面ABCD∥面A1B1C1D1,EF?面A1B1C1D1,∴EF∥平面ABCD,故正確;
對于②,動點E、F運動過程中,AC始終垂直面BEF,∴平面ACF⊥平面BEF,故正確;
對于③,三棱錐E-ABF的底△BEF的面積為定值,A到面BEF的距離為定值,故其體積為定值,故正確;
對于④,令上底面中心為O,當(dāng)E與D1重合時,此時點F與O重合,則兩異面直線所成的角是∠OBC1,可求解∠OBC1=300,故正確.
故答案為:①②③④

點評 本題考查了空間線面、線線、面面位置關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知角θ的終邊過點(4,-3),則tanθ=$-\frac{3}{4}$,$\frac{{sin(θ+{{90}°})+cosθ}}{{sinθ-cos(θ-{{180}°})}}$=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)$f(x)=\left\{\begin{array}{l}{x^2}-4x,x≤0\\{e^x}-1,x>0\end{array}\right.$,若f(x)≥ax在R上恒成立,則a的取值范圍是[-4,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列說法正確的是( 。
A.截距相等的直線都可以用方程$\frac{x}{a}+\frac{y}{a}=1$表示
B.方程x+my-2=0(m∈R)不能表示平行y軸的直線
C.經(jīng)過點P(1,1),傾斜角為θ的直線方程為y-1=tanθ(x-1)
D.經(jīng)過兩點P1(x1,y1),P2(x2,y2)(x1≠x2)的直線方程為$y-{y_1}=\frac{{{y_2}-{y_1}}}{{{x_2}-{x_1}}}(x-{x_1})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.如圖是一幾何體的平面展開圖,其中四邊形ABCD為正方形,△PDC,△PBC,△PAB,△PDA為全等的等邊三角形,E、F分別為PA、PD的中點,在此幾何體中,下列結(jié)論中錯誤的為( 。
A.直線BE與直線CF共面B.直線BE與直線AF是異面直線
C.平面BCE⊥平面PADD.面PAD與面PBC的交線與BC平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}{x-y≥0}&{\;}\\{x+y≤2}&{\;}\\{y≥0}&{\;}\end{array}\right.$,當(dāng)且僅當(dāng)x=y=1時,z=ax+y取得最大值,則實數(shù)a的取值范圍是( 。
A.(-1,1)B.(-∞,1)C.(-∞,-1)D.(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)全集I={0,2,4,6,8,10},集合M={4,8},則∁IM=( 。
A.{4,8}B.{0,2,4,10}C.{0,2,10}D.{0,2,6,10}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知$f(x)=\frac{{{x^2}+1}}{ax+b}$是奇函數(shù),且滿足f(1)=2.
(Ⅰ)求實數(shù)a,b,并確定函數(shù)f(x)的解析式;
(Ⅱ)用定義證明f(x)在[1,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.(1)在△ABC中,a=3,c=2,B=60°求b
(2)在△ABC中,A=60°,B=45°,a=2 求c.

查看答案和解析>>

同步練習(xí)冊答案