【題目】將函數(shù)f(x)=sin 3x-cos 3x+1的圖象向左平移個單位長度,得到函數(shù)g(x)的圖象,給出下列關(guān)于g(x)的結(jié)論:

①它的圖象關(guān)于直線x=對稱;

②它的最小正周期為;

③它的圖象關(guān)于點(1)對稱;

④它在[]上單調(diào)遞增.

其中所有正確結(jié)論的編號是(

A.①②B.②③C.①②④D.②③④

【答案】B

【解析】

根據(jù)函數(shù)圖象的平移變換公式求出函數(shù)的解析式,再利用正弦函數(shù)的對稱性、單調(diào)區(qū)間等相關(guān)性質(zhì)求解即可.

因為f(x)=sin 3x-cos 3x+1=2sin(3x-)+1,由圖象的平移變換公式知,

函數(shù)g(x)=2sin[3(x+)-]+1=2sin(3x+)+1,其最小正周期為,故②正確;

3x+=+,得x=+(kZ),所以x=不是對稱軸,故①錯誤;

3x+=,得x=-(kZ),取k=2,得x=,故函數(shù)g(x)的圖象關(guān)于點(,1)對稱,故③正確;

2-≤3x+≤2+kZ,得-x+,取k=2,得x,取k=3,得x,故④錯誤;

故選:B

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖1是處在同-個平面內(nèi)的兩個全等的直角三角形,,連接是上一點,過,交于點,沿向上翻折,得到如圖2所示的六面體

1)求證:

2)設若平面底面,若平面與平面所成角的余弦值為,求的值;

3)若平面底面,求六面體的體積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】移動支付(支付寶支付,微信支付等)開創(chuàng)了新的支付方式,使電子貨幣開始普及,為了了解習慣使用移動支付方式是否與年齡有關(guān),對某地200人進行了問卷調(diào)查,得到數(shù)據(jù)如下:60歲以上的人群中,習慣使用移動支付的人數(shù)為30人;60歲及以下的人群中,不習慣使用移動支付的人數(shù)為40.已知在全部200人中,隨機抽取一人,抽到習慣使用移動支付的人的概率為0.6.

1)完成如下的列聯(lián)表,并判斷是否有的把握認為習慣使用移動支付與年齡有關(guān),并說明理由.

習慣使用移動支付

不習慣使用移動支付

合計(人數(shù))

60歲以上

60歲及以下

合計(人數(shù))

200

2)在習慣使用移動支付的60歲以上的人群中,每月移動支付的金額如下表:

每月支付金額

300以上

人數(shù)

15

5

現(xiàn)采用分層抽樣的方法從中抽取6人,再從這6人中隨機抽取2人,求這2人中有1人月支付金額超過3000元的概率.

附:,其中.

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓)的右頂點與拋物線)的焦點重合.的離心率為,過的右焦點F且垂直于x軸的直線截所得的弦長為.

1)求橢圓和拋物線的方程;

2)過點的直線l與橢圓交于AB兩點,點B關(guān)于x軸的對稱點為點E,證明:直線過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐ABCD中,點EBD上,EAEBECED,BDCD,△ACD為正三角形,點MN分別在AE,CD上運動(不含端點),且AMCN,則當四面體CEMN的體積取得最大值時,三棱錐ABCD的外接球的表面積為_____.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,已知曲線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸的正半軸為極軸,建立極坐標系,直線的極坐標方程為.

1)求曲線的普通方程和直線的直角坐標方程;

2)若射線的極坐標方程為.相交于點相交于點,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列結(jié)論中正確的個數(shù)是(

①已知函數(shù)是一次函數(shù),若數(shù)列通項公式為,則該數(shù)列是等差數(shù)列;

②若直線上有兩個不同的點到平面的距離相等,則

③在中,“”是“”的必要不充分條件;

④若,則的最大值為2.

A.1B.2C.3D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】惠州市某商店銷售某海鮮,經(jīng)理統(tǒng)計了春節(jié)前后50天該海鮮的日需求量,單位:公斤),其頻率分布直方圖如下圖所示.該海鮮每天進貨1次,每銷售1公斤可獲利40元;若供大于求,剩余的海鮮削價處理,削價處理的海鮮每公斤虧損10元;若供不應求,可從其它商店調(diào)撥,調(diào)撥的海鮮銷售1公斤可獲利30.假設商店該海鮮每天的進貨量為14公斤,商店銷售該海鮮的日利潤為.

1)求商店日利潤關(guān)于日需求量的函數(shù)表達式.

2)根據(jù)頻率分布直方圖,

①估計這50天此商店該海鮮日需求量的平均數(shù).

②假設用事件發(fā)生的頻率估計概率,請估計日利潤不少于620元的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)有兩個極值點(為自然對數(shù)的底數(shù)).

(Ⅰ)求實數(shù)的取值范圍;

(Ⅱ)求證.

查看答案和解析>>

同步練習冊答案