【題目】(題文)已知函數(shù),其中為正實(shí)數(shù).

(1)若函數(shù)處的切線斜率為2,求的值;

(2)求函數(shù)的單調(diào)區(qū)間;

(3)若函數(shù)有兩個極值點(diǎn),求證:

【答案】(1)1;(2)見解析;(3)見解析

【解析】試題分析:(1)根據(jù)導(dǎo)數(shù)幾何意義得,解得的值;(2)先求導(dǎo)數(shù),再根據(jù)導(dǎo)函數(shù)是否變號分類討論,最后根據(jù)導(dǎo)函數(shù)符號確定單調(diào)區(qū)間(3)先根據(jù)韋達(dá)定理得,再化簡,進(jìn)而化簡所證不等式為,最后利用導(dǎo)函數(shù)求函數(shù)單調(diào)性,進(jìn)而確定最小值,證得結(jié)論

試題解析:(1)因?yàn)?/span>,所以,

,所以的值為1.

(2) ,函數(shù)的定義域?yàn)?/span>,

,即,則,此時的單調(diào)減區(qū)間為;

,即,則的兩根為,

此時的單調(diào)減區(qū)間為,,

單調(diào)減區(qū)間為

(3)由(2)知,當(dāng)時,函數(shù)有兩個極值點(diǎn),且

因?yàn)?/span>

要證,只需證

構(gòu)造函數(shù),則

上單調(diào)遞增,又,且在定義域上不間斷,

由零點(diǎn)存在定理,可知上唯一實(shí)根, 且

上遞減, 上遞增,所以的最小值為

因?yàn)?/span>,

當(dāng)時, ,則,所以恒成立.

所以,所以,得證.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在三棱柱中,,,平面平面ABCM的中點(diǎn),DAB中點(diǎn).

(Ⅰ)證明:平面ACM.

(Ⅱ)求三棱柱的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的兩個焦點(diǎn)分別為,點(diǎn)M(1,0)與橢圓短軸的兩個端點(diǎn)的連線相互垂直.

(1)求橢圓C的方程;

(2)過點(diǎn)M(1,0)的直線與橢圓C相交于AB兩點(diǎn),設(shè)點(diǎn)N(3,2),記直線AN、BN的斜率分別為k1、k2,求證:k1+k2為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個袋子中有5個大小相同的球,其中3個白球與2個黑球,現(xiàn)從袋中任意取出一個球,取出后不放回,然后再從袋中任意取出一個球,則第一次為白球、第二次為黑球的概率為(  )

A B C D

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,點(diǎn)的極坐標(biāo)為,直線的極坐標(biāo)方程為,且過點(diǎn),曲線的參數(shù)方程為 (為參數(shù)).

(Ⅰ)求曲線上的點(diǎn)到直線的距離的最大值;

(Ⅱ)過點(diǎn)與直線平行的直線與曲線 交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下兩個圖表是2019年初的4個月我國四大城市的居民消費(fèi)價格指數(shù)(上一年同月)變化圖表,則以下說法錯誤的是(

(注:圖表一每個城市的條形圖從左到右依次是1、2、3、4月份;圖表二每個月份的條形圖從左到右四個城市依次是北京、天津、上海、重慶)

A.3月份四個城市之間的居民消費(fèi)價格指數(shù)與其它月份相比增長幅度較為平均

B.4月份僅有三個城市居民消費(fèi)價格指數(shù)超過102

C.四個月的數(shù)據(jù)顯示北京市的居民消費(fèi)價格指數(shù)增長幅度波動較小

D.僅有天津市從年初開始居民消費(fèi)價格指數(shù)的增長呈上升趨勢

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某親子公園擬建議廣告牌,將邊長為米的正方形ABCD和邊長為1米的正方形AEFGA點(diǎn)處焊接,AM、AN、GM、DN均用加強(qiáng)鋼管支撐,其中支撐鋼管GM、DN垂直于地面于M點(diǎn)和N點(diǎn),且GM、DN、MN長度相等不計(jì)焊接點(diǎn)大小

時,求焊接點(diǎn)A離地面距離;

若記,求加強(qiáng)鋼管AN最長為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在《九章算術(shù)》中,將四個面都為直角三角形的四面體稱之為鱉臑.如圖,在鱉臑中,平面,,且,過點(diǎn)分別作于點(diǎn),于點(diǎn),連結(jié),當(dāng)的面積最大時,__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,橢圓的離心率為,過橢圓右焦點(diǎn)作兩條互相垂直的弦.當(dāng)直線的斜率為0時,.

1)求橢圓的方程;

2)試探究是否為定值?若是,證明你的結(jié)論;若不是,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案