(本題滿分12分)
已知函數(shù)。
(I)求的最小值;
(II)若對所有都有,求實數(shù)的取值范圍。
(Ⅰ)當時,取得最小值。 (Ⅱ)。
解析試題分析:(Ⅰ)的定義域為,的導數(shù)。
令,解得;令,解得。
從而在上單調(diào)遞減,在上單調(diào)遞增。
所以,當時,取得最小值。
(Ⅱ)解法一:令,則,
①若,當時,,
故在上為增函數(shù),
所以,時,,即。
②若,方程的根為 ,
此時,若,則,故在該區(qū)間為減函數(shù)。所以,時,即,與題設(shè)相矛盾。
綜上,滿足條件的實數(shù)的取值范圍是。
解法二:依題意,得在上恒成立,
即不等式對于恒成立。 令,則。 當時,因為,故是上的增函數(shù),所以的最小值是,從而實數(shù)的取值范圍是。
考點:本題主要考查利用導數(shù)研究函數(shù)單調(diào)性、求函數(shù)極值、最值。
點評:典型題,導數(shù)的應用,是高考必考內(nèi)容,注意解答成立問題的一般方法步驟。恒成立問題,通過分離參數(shù)法,轉(zhuǎn)化成求函數(shù)最值問題,應用導數(shù)知識加以解答。這體現(xiàn)了幾道此類題的一般方法步驟。
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù)f(x)=。
(1)求函數(shù)f(x)的定義域;
(2)判斷函數(shù)f(x)的奇偶性,并證明;
(3)判斷函數(shù)f(x)在定義域上的單調(diào)性,并用定義證明。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分14分)已知函數(shù)。
(Ⅰ)若函數(shù)在定義域內(nèi)為增函數(shù),求實數(shù)的取值范圍;
(Ⅱ)設(shè),若函數(shù)存在兩個零點,且滿足,問:函數(shù)在處的切線能否平行于軸?若能,求出該切線方程;若不能,請說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)
(1)若函數(shù)y=f(x)的圖象切x軸于點(2,0),求a、b的值;
(2)設(shè)函數(shù)y="f(x)" 的圖象上任意一點的切線斜率為k,試求的充要條件;(3)若函數(shù)y=f(x)的圖象上任意不同的兩點的連線的斜率小于1,求證。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分14分)
已知函數(shù)(…是自然對數(shù)的底數(shù))的最小值為.
(Ⅰ)求實數(shù)的值;
(Ⅱ)已知且,試解關(guān)于的不等式 ;
(Ⅲ)已知且.若存在實數(shù),使得對任意的,都有,試求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)已知命題P:函數(shù)是R上的減函數(shù),命題Q:在 時,不等式恒成立,若命題“”是真命題,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
一片森林原來面積為,計劃每年砍伐一些樹,且每年砍伐面積的百分比相等,當砍伐到面積的一半時,所用時間是10年,為保護生態(tài)環(huán)境,森林面積至少要保留原面積的,已知到今年為止,森林剩余面積為原來的.
(Ⅰ)求每年砍伐面積的百分比;
(Ⅱ)到今年為止,該森林已砍伐了多少年?
(Ⅲ)今后最多還能砍伐多少年?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com