已知Rt△ABC中,AB=8,AC=4,BC=4
3
,則對(duì)于△ABC所在平面內(nèi)的一點(diǎn)P,
PA
•(
PB
+
PC
)的最小值是( 。
A、-14B、-8
C、-26D、-30
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專(zhuān)題:平面向量及應(yīng)用
分析:分別以CB,CA所在的直線(xiàn)為x,y軸建立直角坐標(biāo)系,然后利用向量的數(shù)量積的坐標(biāo)表示求解
PA
•(
PB
+
PC
),根據(jù)兩點(diǎn)間的距離公式即可求解
解答: 解:分別以CB,CA所在的直線(xiàn)為x,y軸建立直角坐標(biāo)系

∵AB=8,AC=4
∴A(0,4),C(0,0),B(4
3
,0)
設(shè)P(x,y),則
PA
=(-x,4-y)
,
PB
=(4
3
-x,-y)
,
PC
=(-x,-y)
,
PB
+
PC
=(4
3
-2x,-2y)

PA
•(
PB
+
PC
)=[-x(4
3
-2x)]+(4-y)•(-2y)

=-4
3
x+2x2+2y2-8y

=2(x-
3
)2+2(y-2)2-14

(x-
3
)2+(y-2)2
為△ABC內(nèi)一點(diǎn)到點(diǎn)(
3
,2
)距離平方,當(dāng)其最小時(shí)向量
PA
•(
PB
+
PC
)的最小,
因?yàn)辄c(diǎn)(
3
,2
)也在△ABC內(nèi),
 所以(x-
3
)2+(y-2)2
最小為0,所以
PA
•(
PB
+
PC
)的最小值是-14.
故選:A.
點(diǎn)評(píng):本題主要考查了向量的數(shù)量積的坐標(biāo)表示的應(yīng)用,解題的關(guān)鍵是根據(jù)所求式子幾何意義.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

圓x2+y2=4的切線(xiàn)與x軸正半軸,y軸正半軸圍成一個(gè)三角形,當(dāng)該三角形面積最小時(shí),切點(diǎn)為P(如圖).
(Ⅰ)求點(diǎn)P的坐標(biāo);
(Ⅱ)焦點(diǎn)在x軸上的橢圓C過(guò)點(diǎn)P,且與直線(xiàn)l:y=x+
3
交于A、B兩點(diǎn),若△PAB的面積為2,求C的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,若曲線(xiàn)y=ax2+
b
x
(a,b為常數(shù))過(guò)點(diǎn)P(2,-5),且該曲線(xiàn)在點(diǎn)P處的切線(xiàn)與直線(xiàn)7x+2y+3=0平行,則a+b的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)不共線(xiàn)的向量
α
,
β
,|
α
|=2,|
β
|=1,則向量
β
α
-
β
的夾角的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
4x-x2,x≤0
x2+4x,x>0
,若f(a)<f(2-a2),則實(shí)數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={y丨y=x2},B={x丨
x+1
x-2
<0},求A∩B=( 。
A、[0,+∞)
B、(-1,2)
C、[0,2)
D、(-1,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將邊長(zhǎng)為1的正方形以其一邊所在直線(xiàn)為旋轉(zhuǎn)軸旋轉(zhuǎn)一周,所得幾何體的側(cè)面積是( 。
A、4πB、3πC、2πD、π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知拋物線(xiàn)C:x2=4y,過(guò)點(diǎn)M(0,2)任作一直線(xiàn)與C相交于A,B兩點(diǎn),過(guò)點(diǎn)B作y軸的平行線(xiàn)與直線(xiàn)AO相交于點(diǎn)D(O為坐標(biāo)原點(diǎn)).
(1)證明:動(dòng)點(diǎn)D在定直線(xiàn)上;
(2)作C的任意一條切線(xiàn)l(不含x軸),與直線(xiàn)y=2相交于點(diǎn)N1,與(1)中的定直線(xiàn)相交于點(diǎn)N2,證明:|MN2|2-|MN1|2為定值,并求此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某企業(yè)有甲、乙兩個(gè)研發(fā)小組,他們研發(fā)新產(chǎn)品成功的概率分別為
2
3
3
5
.現(xiàn)安排甲組研發(fā)新產(chǎn)品A,乙組研發(fā)新產(chǎn)品B,設(shè)甲、乙兩組的研發(fā)相互獨(dú)立.
(Ⅰ)求至少有一種新產(chǎn)品研發(fā)成功的概率;
(Ⅱ)若新產(chǎn)品A研發(fā)成功,預(yù)計(jì)企業(yè)可獲利潤(rùn)120萬(wàn)元;若新產(chǎn)品B研發(fā)成功,預(yù)計(jì)企業(yè)可獲利潤(rùn)100萬(wàn)元,求該企業(yè)可獲利潤(rùn)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案