已知函數(shù)。
(1)是否存在實數(shù),使是奇函數(shù)?若存在,求出的值;若不存在,給出證明。
(2)當(dāng)時,恒成立,求實數(shù)的取值范圍。

(1)m=1;(2)

解析試題分析:(1)為奇函數(shù)       2分
=1    4分
(2)方法一:當(dāng)時,恒成立當(dāng)時,。1分
用單調(diào)性定義證明上遞增  6分
解得。2分
方法二:
6分
解得。3分
考點:本題主要考查函數(shù)的奇偶性,指數(shù)函數(shù)的性質(zhì),恒成立問題的一般解法。
點評:中檔題,研究函數(shù)的奇偶性,應(yīng)先確定函數(shù)的定義域是否關(guān)于原點對稱,其次,再研究f(-x)與f(x)d 關(guān)系。涉及恒成立問題,往往利用分離參數(shù)法,轉(zhuǎn)化成求函數(shù)最值問題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù)
(1)若是定義域上的單調(diào)函數(shù),求的取值范圍;
(2)若在定義域上有兩個極值點、,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)
求(1)的值域;
(2)記的內(nèi)角A、B、C的對邊長分別為a,b,c,若=1,b=1,c=,求a的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
設(shè)為實數(shù),且
(1)求方程的解;
(2)若滿足,試寫出的等量關(guān)系(至少寫出兩個);
(3)在(2)的基礎(chǔ)上,證明在這一關(guān)系中存在滿足.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)
已知函數(shù),且方程有兩個實根.
(1)求函數(shù)的解析式;
(2)設(shè),解關(guān)于的不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分)
已知函數(shù)
(1)求的值;
(2)當(dāng)時,求函數(shù)的值域。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分16分)
已知函數(shù),若為定義在R上的奇函數(shù),則(1)求實數(shù)的值;(2)求函數(shù)的值域;(3)求證:在R上為增函數(shù);(4)若m為實數(shù),解關(guān)于的不等式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題13分)已知.
(I)求的單調(diào)增區(qū)間;
(II)若在定義域R內(nèi)單調(diào)遞增,求的取值范圍;
(III)是否存在,使在(-∞,0]上單調(diào)遞減,在[0,+∞)上單調(diào)遞增?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)我們把同時滿足下列兩個性質(zhì)的函數(shù)稱為“和諧函數(shù)” :
①函數(shù)在整個定義域上是單調(diào)增函數(shù)或單調(diào)減函數(shù);
②在函數(shù)的定義域內(nèi)存在區(qū)間,使得函數(shù)在區(qū)間上的值域為.
⑴已知冪函數(shù)的圖像經(jīng)過點,判斷是否是和諧函數(shù)?
⑵判斷函數(shù)是否是和諧函數(shù)?
⑶若函數(shù)是和諧函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案