(12分)已知函數(shù)
(1)試證明上為增函數(shù);
(2)當時,求函數(shù)的最值
(1)證明:見解析;
(2)處取得最小值處取得最大值
(1)根據單調性定義第一步在在上任意取兩個實數(shù),且,
第二步作差比較,并且判定差值符號,第三步得出結論.
(2)在(1)的基礎上可知在區(qū)間上是增函數(shù),因而可知當x=3時,f(x)最小,當x=5時,f(x)最大.
(1)證明:在上任意取兩個實數(shù),且


  ∴  
 即
上為增函數(shù);
(2)∵上為增函數(shù)
處取得最小值
處取得最大值
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)已知定義域為的函數(shù)是奇函數(shù)                   
⑴求函數(shù)的解析式;
⑵判斷并證明函數(shù)的單調性;
⑶若對于任意的,不等式恒成立,求的取值范圍.                                             

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(附加題)本小題滿分10分
已知是定義在上單調函數(shù),對任意實數(shù)有:時,.
(1)證明:;
(2)證明:當時,;
(3)當時,求使對任意實數(shù)恒成立的參數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知是定義在上的偶函數(shù),且當時,.
(1)求當時,的解析式;
(2)作出函數(shù)的圖象,并指出其單調區(qū)間(不必證明).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知函數(shù),則       .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

偶函數(shù)上是增函數(shù),則滿足的取值范圍是_____

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分16分)
已知函數(shù)是偶函數(shù).
(1)求的值;
(2)設函數(shù),其中若函數(shù)的圖象有且只有一個交點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù),則滿足不等式的取值范圍
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

給出下列四個函數(shù):①f(x)=1-x2;②f(x)= -3x+1;③f(x)=;④f(x)=
其中既是奇函數(shù)又是定義域上的減函數(shù)的函數(shù)個數(shù)是           ( )
A.0B.1C.2D.3

查看答案和解析>>

同步練習冊答案