【題目】軸截面是邊長為4 的等邊三角形的圓錐的直觀圖如圖所示,過底面圓周上任一點作一平面α,且α與底面所成的二面角為 ,已知α與圓錐側(cè)面交線的曲線為橢圓,則此橢圓的離心率為( )
A.
B.
C.
D.
【答案】C
【解析】解答:本題綜合考查空間幾何體中的線面關(guān)系與解析幾何中直線與直線的位置關(guān)系以及平面幾何中圓的相關(guān)定理的應(yīng)用,意在考查數(shù)形結(jié)合思想與空間想象能力.
如圖,根據(jù)軸截面是邊長為4 的等邊三角形,可知橢圓的長軸長為AB=6,設(shè)O為橢圓的中心,則a=OB=OA=3,過O作平行于底面的平面,可得到截面圓,交橢圓于兩點C、D,則C、D即是橢圓短半軸的頂點.根據(jù)題意知AB⊥BF,在直角三角形OBF中,∠OBF=90°,所以FO=2 ,F是BP的中點,過點B作AP的平行線,交AM于點G,則E是AG的中點,所以O(shè)E= AP= ,由相交弦定理得CO2=OF×OE,所以b2=6,所以c2=a2-b2=3,所以橢圓的離心率為 .
分析:本題主要考查了平面與圓錐面的截線,解決問題的關(guān)鍵是根據(jù)平面與圓錐面的截線滿足的有關(guān)條件通過構(gòu)造輔助線結(jié)合所學橢圓性質(zhì)及相交弦定理計算即可
科目:高中數(shù)學 來源: 題型:
【題目】為調(diào)查某市學生百米運動成績,從該市學生中按照男女生比例隨機抽取50名學生進行百米測試,測試成績?nèi)慷冀橛?3秒到18秒之間,將測試結(jié)果按如下方式分成五組,第一組[13,14),第二組[14,15),…,第五組[17,18],如圖是按上述分組方法得到的頻率分布直方圖.
(1)設(shè)m,n表示樣本中兩個學生的百米測試成績,已知m,n∈[13,14)∪[17,18],求事件“|m-n|>2”的概率;
(2)根據(jù)有關(guān)規(guī)定,成績小于16秒為達標.
如果男女生使用相同的達標標準,則男女生達標情況如附表:
根據(jù)上表數(shù)據(jù),能否在犯錯誤的概率不超過0.01的前提下認為“體育達標與性別有關(guān)”?若有,你能否提出一個更好的解決方法來?
附:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某班主任對全班50名學生學習積極性和對待班級工作的態(tài)度進行了調(diào)查,統(tǒng)計數(shù)據(jù)如下表所示:
積極參加班級工作 | 不太主動參加班級工作 | 合計 | |
學習積極性高 | 18 | 7 | 25 |
學習積極性一般 | 6 | 19 | 25 |
合計 | 24 | 26 | 50 |
參考公式及數(shù)據(jù):
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
(1)如果隨機抽查這個班的一名學生,那么抽到積極參加班級工作的學生的概率是多少?抽到不太主動參加班級工作且學習積極性一般的學生的概率是多少?
(2)試運用獨立性檢驗的思想方法分析:學生的學習積極性與對待班級工作的態(tài)度是否有關(guān)系?并說明理由?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知點P在☉O外,PC是☉O的切線,切點為C,直線PO與☉O相交于點A,B.
(1)試探索∠BCP與∠P的數(shù)量關(guān)系;
(2)若∠A=30°,則PB與PA有什么關(guān)系?
(3)∠A可能等于45°嗎?為什么?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在底面半徑為6的圓柱內(nèi),有兩個半徑也為6的球面,兩球的球心距為13,若作一個平面與兩個球都相切,且與圓柱面相交成一橢圓,則橢圓的長軸長為。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知集合A={x|1<x<3},集合B={x|2m<x<1-m}.
(1)當m=-1時,求A∪B;
(2)若AB,求實數(shù)m的取值范圍;
(3)若A∩B=,求實數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com