分析 先求出p的值,再設(shè)A,B兩點的拋物線的準線上的射影分別為E,F(xiàn),過B作AE的垂線BC,在三角形ABC中,∠BAC等于直線AB的傾斜角,其正切值即為K值,利用在直角三角形ABC中,求出tan∠BAC,得出直線AB的斜率,即可得出結(jié)論.
解答 解:∵$\frac{1}{{|{\overrightarrow{AF}}|}}+\frac{1}{{|{\overrightarrow{FB}}|}}=1$,
∴由拋物線的性質(zhì),可得$\frac{2}{p}$=1,∴p=2.
如圖,設(shè)A,B兩點的拋物線的準線上的射影分別為E,F(xiàn),
過B作AE的垂線BC,
在三角形ABC中,∠BAC等于直線AB的傾斜角,
其正切值即為K值,
設(shè)|BF|=n,∵|AF|=2|BF|,∴|AF|=2n,
根據(jù)拋物線的定義得:|AE|=2n,|BF|=n,
∴|AC|=n,
在直角三角形ABC中,tan∠BAC=$\frac{BC}{AC}$=2$\sqrt{2}$,
∴直線l的方程為y=2$\sqrt{2}$(x-1).
故答案為y=2$\sqrt{2}$(x-1).
點評 本題主要考查直線與拋物線的位置關(guān)系,拋物線的簡單性質(zhì),特別是焦點弦問題,解題時要善于運用拋物線的定義解決問題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4 | B. | $\sqrt{2}$ | C. | $\frac{3\sqrt{2}}{2}$ | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | $\frac{1}{6}$ | C. | $\frac{1}{3}$ | D. | $\frac{8}{21}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 在△ABC中,若A>B,則cosA<cosB | |
B. | 若b2=ac,則a,c的等比中項為b | |
C. | 若命題p與p∧q為真,則q一定為真 | |
D. | 若p:?x∈(0,+∞),lnx<x-1,則¬p:?x∈(0,+∞),lnx≥x-1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com