如圖,已知正四棱柱ABCD-A1B1C1D1的底面邊長(zhǎng)是2,體積是16,M,N分別是棱BB1、B1C1的中點(diǎn).
(1)求異面直線MN與A1C1所成角的大。ńY(jié)果用反三角表示);
(2)求過A1,B,C1的平面與該正四棱柱所截得的多面體A1C1D1-ABCD的體積.

解:(1)由題意得16=22×B1B,∴B1B=4.
在Rt△ABC中,由勾股定理可得==A1C1
同理可得=
連接BC1,∵M(jìn),N分別是棱BB1、B1C1的中點(diǎn),∴BC1∥MN,
∴∠A1C1B或其補(bǔ)角是異面直線MN與A1C1所成的角.
連接BA1,在△A1BC1中,由余弦定理得cos∠A1C1B==
∴異面直線MN與A1C1所成的角為
(2)∵
,
∴多面體A1C1D1-ABCD的體積為
分析:(1)利用三角形的中位線定理、勾股定理、異面直線所成的角的定義即可得出;
(2)先計(jì)算出三棱錐B-A1B1C1體積,即可得出要求的體積.
點(diǎn)評(píng):熟練掌握三角形的中位線定理、勾股定理、異面直線所成的角的定義及三棱錐的體積是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知正四棱柱ABCD-A1B1C1D1,點(diǎn)E在棱D1D上,截面EAC∥D1B,且面EAC與底面ABCD所成的角為45°,AB=a.
(1)求截面EAC的面積;
(2)求異面直線A1B1與AC之間的距離;
(3)求三棱錐B1-BAC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知正四棱柱ABCD-A1B1C1D1 的底面邊長(zhǎng)為3,側(cè)棱長(zhǎng)為4,連接A1B,過A作AF⊥A1B垂足為F,且AF的延長(zhǎng)線交B1B于E.
(1)求證:D1B⊥平面AEC;
(2)求二面角B-AE-C的平面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省泰安市新泰市新汶中學(xué)高二(上)期末數(shù)學(xué)模擬試卷(理科)(解析版) 題型:解答題

如圖,已知正四棱柱ABCD-A1B1C1D1 的底面邊長(zhǎng)為3,側(cè)棱長(zhǎng)為4,連接A1B,過A作AF⊥A1B垂足為F,且AF的延長(zhǎng)線交B1B于E.
(1)求證:D1B⊥平面AEC;
(2)求二面角B-AE-C的平面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:1999年全國統(tǒng)一高考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

如圖,已知正四棱柱ABCD-A1B1C1D1,點(diǎn)E在棱D1D上,截面EAC∥D1B,且面EAC與底面ABCD所成的角為45°,AB=a.
(1)求截面EAC的面積;
(2)求異面直線A1B1與AC之間的距離;
(3)求三棱錐B1-BAC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:1999年廣東省高考數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知正四棱柱ABCD-A1B1C1D1,點(diǎn)E在棱D1D上,截面EAC∥D1B,且面EAC與底面ABCD所成的角為45°,AB=a.
(1)求截面EAC的面積;
(2)求異面直線A1B1與AC之間的距離;
(3)求三棱錐B1-BAC的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案