已知a<2,f(x)=x-alnx-
a-1
x
,g(x)=
1
2
x2+ex-xex
.(注:e是自然對數(shù)的底)
(1)求f(x)的單調(diào)區(qū)間;
(2)若存在x1∈[e,e2],使得對任意的x2∈[-2,0],f(x1)<g(x2)恒成立,求實(shí)數(shù)a的取值范圍.
(1)由題意可得f(x)的定義域?yàn)椋?,+∞),f′(x)=
(x-1)[x-(a-1)]
x2

∵a<2,∴a-1<1
①當(dāng)a-1≤0,即a≤1,∴x∈(0,1)時(shí),f′(x)<0,f(x)是減函數(shù),x∈(1,+∞)時(shí),f′(x)>0,f(x)是增函數(shù);
②當(dāng)0<a-1<1,即1<a<2,∴x∈(0,a-1)∪(1,+∞)時(shí),f′(x)>0,f(x)是增函數(shù),x∈(a-1,1)時(shí),f′(x)<0,f(x)是減函數(shù);
綜上所述,當(dāng)a≤1時(shí),f(x)的單調(diào)減區(qū)間是(0,1),單調(diào)增區(qū)間是(1,+∞);當(dāng)1<a<2時(shí),f(x)的單調(diào)減區(qū)間是(a-1,1),單調(diào)增區(qū)間是(0,a-1),(1,+∞);
(2)由題意,存在x1∈[e,e2],使得對任意的x2∈[-2,0],f(x1)<g(x2)恒成立,等價(jià)于對任意x1∈[e,e2]及x2∈[-2,0],f(x)min<g(x)min,
由(1),當(dāng)a<2,x1∈[e,e2]時(shí),f(x)是增函數(shù),f(x)min=f(e)=e-a-
a-1
e

∵g′(x)=x(1-ex),對任意的x2∈[-2,0],g′(x)≤0
∴g(x)是奇函數(shù),∴g(x)min=g(0)=1
e-a-
a-1
e
<1

a>
e2-e+1
e+1

∵a<2
e2-e+1
e+1
<a<2
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a>1,f(x)=ax2+2x,則f(x)<1成立的一個(gè)充分不必要條件是(  )
A、0<x<1B、-1<x<0C、-2<x<0D、-2<x<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a∈R,函數(shù)f(x)=
a
x
+lnx-1,g(x)=(lnx-1)
e
x
 
+x
(其中e為自然對數(shù)的底).
(1)當(dāng)a>0時(shí),求函數(shù)f(x)在區(qū)間(0,e]上的最小值;
(2)是否存在實(shí)數(shù)x0∈(0,e],使曲線y=g(x)在點(diǎn)x=x0處的切線與y軸垂直?若存在求出x0的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a∈R,函數(shù)f(x)=
ax
+lnx-1,g(x)=(lnx-1)ex+x

(1)判斷函數(shù)f(x)在(0,e]上的單調(diào)性;
(2)是否存在實(shí)數(shù)x0∈(0,+∞),使曲線y=g(x)在點(diǎn)x=x0處的切線與y軸垂直?若存在,求出x0的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•湛江二模)已知a<2,f(x)=x-alnx-
a-1
x
,g(x)=
1
2
x2+ex-xex
.(注:e是自然對數(shù)的底)
(1)求f(x)的單調(diào)區(qū)間;
(2)若存在x1∈[e,e2],使得對任意的x2∈[-2,0],f(x1)<g(x2)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案