已知,問是否存在這樣的實(shí)數(shù)值,使函數(shù)在上遞減,在上遞增?

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
4
+
y2
9
=1
上任一點(diǎn)P,由點(diǎn)P向x軸作垂線段PQ,垂足為Q,點(diǎn)M在PQ上,且
PM
=2
MQ
,點(diǎn)M的軌跡為C.
(1)求曲線C的方程;
(2)過點(diǎn)D(0,-2)作直線l與曲線C交于A、B兩點(diǎn),設(shè)N是過點(diǎn)(0,-
4
17
)
且平行于x軸的直線上一動(dòng)點(diǎn),滿足
ON
=
OA
+
OB
(O為原點(diǎn)),問是否存在這樣的直線l,使得四邊形OANB為矩形?若存在,求出直線的方程;若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)坐標(biāo)系中,已知一個(gè)圓心在坐標(biāo)原點(diǎn),半徑為2的圓,從這個(gè)圓上任意一點(diǎn)P向y軸作垂線段PP′,P′為垂足.
(1)求線段PP′中點(diǎn)M的軌跡C的方程.
(2)過點(diǎn)Q(一2,0)作直線l與曲線C交于A、B兩點(diǎn),設(shè)N是過點(diǎn)(-
4
17
,0),且以言
a
=(0,1)
為方向向量的直線上一動(dòng)點(diǎn),滿足
ON
=
OA
+
OB
(O為坐標(biāo)原點(diǎn)),問是否存在這樣的直線l,使得四邊形OANB為矩形?若存在,求出直線Z的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知y=f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=x+x2
(1)求x<0時(shí),f(x)的解析式;
(2)問是否存在這樣的非負(fù)數(shù)a,b,當(dāng)x∈[a,b]時(shí),f(x)的值域?yàn)閇4a-2,6b-6]?若存在,求出所有的a,b值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P1(a1,b1),P2(a2,b2).…Pn(an,bn)(n∈N*)都在函數(shù)y=1og
12
x
的圖象上.
(1)若數(shù)列{bn}是等差數(shù)列,求證數(shù)列{an}是等比數(shù)列;
(2)若數(shù)列{an}的前n項(xiàng)和是Sn=1-2-n,過點(diǎn)Pn,Pn+1的值線與兩坐標(biāo)軸所圍三角形面積為cn,求最小的實(shí)數(shù)t使cn≤t對(duì)n∈N*恒成立;
(3)若數(shù)列{bn}為由(2)中{an}得到的數(shù)列,在bk與bk+1之間插入3k-1(k∈N*)個(gè)3,得一新數(shù)列{dn},問是否存在這樣的正整數(shù)m,使數(shù)列{dn}的前m項(xiàng)的和Sm=2008,如果存在,求出m的值,如果不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案