如圖,平面平面,是等腰直角三角形,,四邊形是直角梯形,,,,點(diǎn)、分別為的中點(diǎn).

(1)       求證:平面;

(2)       求直線和平面所成角的正弦值;

(3)       能否在上找到一點(diǎn),使得平面?若能,請(qǐng)指出點(diǎn)的位置,并加以證明;若不能,請(qǐng)說(shuō)明理由 .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:044

如圖,已知CD是等邊三角形ABCAB上的高,沿CD將△ADC折起,使平面ADC與平面BDC互相垂直

   (Ⅰ)求AB與平面BDC所成的角;

   (Ⅱ)若O點(diǎn)在DC上,且分DC的比為,求二面角A-BO-C的正切值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:數(shù)學(xué)教研室 題型:044

如圖,已知CD是等邊三角形ABCAB上的高,沿CD將△ADC折起,使平面ADC與平面BDC互相垂直

   (Ⅰ)求AB與平面BDC所成的角;

   (Ⅱ)若O點(diǎn)在DC上,且分DC的比為,求二面角A-BO-C的正切值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,平面VAD⊥平面ABCD,△VAD是等邊三角形,ABCD是矩形,AB:AD=數(shù)學(xué)公式:1,F(xiàn)是AB的中點(diǎn).
(1)求VC與平面ABCD所成的角;
(2)求二面角V-FC-B的度數(shù); 
(3)當(dāng)V到平面ABCD的距離是3時(shí),求B到平面VFC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,△VAD是等邊三角形,ABCD是矩形,,平面VAD⊥平面ABCD,F(xiàn)為AB中點(diǎn)。

(1)求VC與平面ABCD所成角的大;

(2)當(dāng)V到平面ABCD的距離為3時(shí),求B到平面VFC的距離。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年河北省保定市徐水綜合高中高三數(shù)學(xué)三輪專題復(fù)習(xí):立體幾何(解析版) 題型:解答題

如圖,平面VAD⊥平面ABCD,△VAD是等邊三角形,ABCD是矩形,AB:AD=:1,F(xiàn)是AB的中點(diǎn).
(1)求VC與平面ABCD所成的角;
(2)求二面角V-FC-B的度數(shù);
(3)當(dāng)V到平面ABCD的距離是3時(shí),求B到平面VFC的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案