已知函數(shù)f(x)=x3-3x2-9x+11.
(1)寫出函數(shù)f(x)的遞減區(qū)間;
(2)討論函數(shù)f(x)的極大值或極小值,如有試寫出極值.(要列表求)
解:(1)∵f(x)=x
3-3x
2-9x+11,
∴f′(x)=3x
2-6x-9=3(x+1)(x-3),
由f′(x)=3(x+1)(x-3)<0,得-1<x<3.
∴函數(shù)f(x)的遞減區(qū)間是(-1,3).
(2)∵f(x)=x
3-3x
2-9x+11,
∴f′(x)=3x
2-6x-9=3(x+1)(x-3),
由f′(x)=3(x+1)(x-3)=0,得x
1=-1,x
2=3.
列表討論:
x | (-∞,-1) | -1 | (-1,3) | 3 | (3,+∞) |
f(x) | + | 0 | - | 0 | + |
f′(x) | ↑ | 極大值 | ↓ | 極小值 | ↑ |
∴當(dāng)x=-1時(shí),函數(shù)取得極林值f(-1)=-1-3+9+11=16;
當(dāng)x=3時(shí),函數(shù)取得極小值f(3)=27-27-27+11=-16.
分析:(1)由f(x)=x
3-3x
2-9x+11,知f′(x)=3x
2-6x-9=3(x+1)(x-3),由f′(x)=3(x+1)(x-3)<0,能求出函數(shù)f(x)的遞減區(qū)間.
(2)由f(x)=x
3-3x
2-9x+11,知f′(x)=3x
2-6x-9=3(x+1)(x-3),由f′(x)=3(x+1)(x-3)=0,得x
1=-1,x
2=3.列表討論,能求出函數(shù)f(x)的極大值和極小值.
點(diǎn)評(píng):本題考樣函數(shù)的單調(diào)遞減區(qū)間的求法,考查函數(shù)的極值的求法.解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意導(dǎo)數(shù)性質(zhì)的合理運(yùn)用.