向量a=(n,1)與b=(4,n)共線且方向相同,則n等于(    )

A.               B.±                C.2                   D.±2

解析:由于a=(n,1)與b=(4,n)共線,所以n2-4=0,∴n=±2.又當(dāng)n=-2時(shí),a=(-2,1),b=(4,-2)共線但方向相反,∴n=2.

答案:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
m
=(1,1),向量
n
與向量
m
夾角為
4
,且
m
n
=-1.
(Ⅰ)求向量
n
;
(Ⅱ)設(shè)向量
a
=(1,0)向量
b
=(cosx,2cos2
π
3
-
x
2
)),其中0<x<
3
,若
a
n
,試求|
n
+
b
|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•浙江模擬)平面內(nèi)與直線平行的非零向量稱為直線的方向向量;與直線的方向向量垂直的非零向量稱為直線的法向量.在平面直角坐標(biāo)系中,利用求動(dòng)點(diǎn)的軌跡方程的方法,可以求出過(guò)點(diǎn)A(2,1)且法向量為
n
=(-1,2)的直線
(點(diǎn)法式)方程為-(x-2)+2(y-1)=0,化簡(jiǎn)后得x-2y=0.類比以上求法,在空間直角坐標(biāo)系中,經(jīng)過(guò)點(diǎn)A(2,1,3),且法向量為
n
=(-1,2,1)
的平面(點(diǎn)法式)方程為
x-2y-z+3=0
x-2y-z+3=0
(請(qǐng)寫(xiě)出化簡(jiǎn)后的結(jié)果).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

當(dāng)n=_____________時(shí),向量a=(n,1)與b=(4,n)共線且方向相同.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理)已知一列非零向量a n,n∈N*,滿足:a1=(10,-5), a n=(xn,yn)=k(xn-1-yn-1,xn-1+yn-1)(n≥2),其中k是非零常數(shù).

(1)求數(shù)列{| a n|}的通項(xiàng)公式;

(2)求向量a n-1a n的夾角(n≥2);

(3)當(dāng)k=時(shí),把a 1, a 2,…, a n,…中所有與a 1共線的向量按原來(lái)的順序排成一列,記為b1,b2,…,bn,…,令OBn=b1+b2+…+bn,O為坐標(biāo)原點(diǎn),求點(diǎn)列{Bn}的極限點(diǎn)B的坐標(biāo).〔注:若點(diǎn)坐標(biāo)為(tn,sn),且tn=t,sn=s,則稱點(diǎn)B(t,s)為點(diǎn)列的極限點(diǎn)〕

(文)設(shè)函數(shù)f(x)=5x-6,g(x)=f(x).

(1)解不等式g(n)[g(1)+g(2)+…+g(n)]<0(n∈N*);

(2)求h(n)=g(n)[g(1)+g(2)+…+g(n)]-132n(n∈N*)的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案