已知y=
1
3
x3+bx2+(b+2)x+3是R上的單調(diào)增函數(shù),則b的取值是( 。
A、b<-1或b>2
B、b≤-2或b≥2
C、-1<b<2
D、-1≤b≤2
分析:三次函數(shù)y=
1
3
x3+bx2+(b+2)x+3的單調(diào)性,通過其導(dǎo)數(shù)進(jìn)行研究,故先求出導(dǎo)數(shù),利用其導(dǎo)數(shù)恒大于0即可解決問題.
解答:解:∵已知y=
1
3
x3+bx2+(b+2)x+3
∴y′=x2+2bx+b+2,
∵f(x)是R上的單調(diào)增函數(shù),
∴x2+2bx+b+2≥0恒成立,
∴△≤0,即b2-b-2≤0,
則b的取值是-1≤b≤2.
故選D.
點評:本題考查函數(shù)的單調(diào)性及單調(diào)區(qū)間、利用導(dǎo)數(shù)解決含有參數(shù)的單調(diào)性問題,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知y=
1
3
x3+2x2+a2x+5
是單調(diào)函數(shù),則實數(shù)a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知y=
13
x3+bx2+(b+2)x+3在R上不是單調(diào)函數(shù),則b的取值范圍是
(-∞,-1)∪(2,+∞)
(-∞,-1)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知y=
1
3
x3+bx2+(b+2)x+3是R上的單調(diào)增函數(shù),則b的取值是( 。
A.b<-1或b>2B.b≤-2或b≥2C.-1<b<2D.-1≤b≤2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知y=
1
3
x3+2x2+a2x+5
是單調(diào)函數(shù),則實數(shù)a的取值范圍是( 。
A.(-∞,-1]∪[1,+∞)B.(-∞,-2]∪[2,+∞)C.(-∞,-3]∪[3,+∞)D.(-∞,-4]∪[4,+∞)

查看答案和解析>>

同步練習(xí)冊答案