(本題滿分15分)
在三棱錐中,
(1)證明:
(2)求三棱錐的體積
(1)證明:

……………………………………………………2分
所以 ……………………………………………………4分
所以……………………………………6分
…………………………………………………8分
…………………………………………………………10分
(2)在中, 所以, ………12分
又 在中,所以 ………14分
所以………15分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知平面,,直線,若,,則
A.垂直于平面的平面一定平行于平面
B.垂直于直線的直線一定垂直于平面
C.垂直于平面的平面一定平行于直線
D.垂直于直線的平面一定與平面,都垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,空間四邊形S-ABC中,各邊及對角線長都相等,若E、F分別為SC、AB的中點(diǎn),那么異面直線EF與SA所成的角等于(    )
A.90°         B.60°         C.45°         D.30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)如圖,在直三棱柱ABC-中,,D,E分別為BC,的中點(diǎn),的中點(diǎn),四邊形是邊長為6的正方形.
(1)求證:平面;
(2)求證:平面;
(3)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
1.(本題滿分14分)如圖,矩形中,,,
上的點(diǎn),且,.(Ⅰ)求證:平面;(Ⅱ)求證:平面;(Ⅲ)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

.已知不重合的平面、β和不重合的直線m、n,給出下列命題:
m∥n,n??m∥;
m∥n,n??m與不相交;
∩β=m,n∥,n∥β?n∥m;
∥β,m∥β,m?m∥;
m∥,n∥β,m∥n?∥β;
m?,n?β,⊥β?m⊥n;
m⊥,n⊥β,與β相交?m與n相交;
m⊥n,n?β,mβ?m⊥β;

其中正確的個數(shù)為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)如圖,在三棱錐中,底面
,
點(diǎn),分別在棱上,且            
(Ⅰ)求證:平面;
(Ⅱ)當(dāng)的中點(diǎn)時,求與平面所成的角的余弦值;
(Ⅲ)是否存在點(diǎn)使得二面角為直二面角?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)如圖,已知矩形ABCD的邊AB="2" ,BC=,點(diǎn)E、F分別是邊AB、CD的中點(diǎn),沿AF、EC分別把三角形ADF和三角形EBC折起,使得點(diǎn)D和點(diǎn)B重合,記重合后的位置為點(diǎn)P。
(1)求證:平面PCE平面PCF;
(2)設(shè)M、N分別為棱PA、EC的中點(diǎn),求直線MN與平面PAE所成角的正弦;
(3)求二面角A-PE-C的大小。
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知,則的位置關(guān)系是           。

查看答案和解析>>

同步練習(xí)冊答案