已知圓C:(x-a)2+(y-b)2=1,設(shè)平面區(qū)域Ω=
x+y-7≤0
x-y+3≥0
y≥0
,若圓心C∈Ω,且圓C與x軸相切,則a2+b2的最大值為( 。
A、5B、29C、37D、49
考點(diǎn):簡(jiǎn)單線(xiàn)性規(guī)劃
專(zhuān)題:不等式的解法及應(yīng)用
分析:作出不等式組對(duì)應(yīng)的平面區(qū)域,利用圓C與x軸相切,得到b=1為定值,此時(shí)利用數(shù)形結(jié)合確定a的取值即可得到結(jié)論.
解答: 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:
圓心為(a,b),半徑為1
∵圓心C∈Ω,且圓C與x軸相切,
∴b=1,
則a2+b2=a2+1,
∴要使a2+b2的取得最大值,則只需a最大即可,
由圖象可知當(dāng)圓心C位于B點(diǎn)時(shí),a取值最大,
y=1
x+y-7=0
,解得
x=6
y=1
,即B(6,1),
∴當(dāng)a=6,b=1時(shí),a2+b2=36+1=37,即最大值為37,
故選:C
點(diǎn)評(píng):本題主要考查線(xiàn)性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決線(xiàn)性規(guī)劃題目的常用方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè){an}是首項(xiàng)為a1,公差為-1的等差數(shù)列,Sn為其前n項(xiàng)和,若S1,S2,S4成等比數(shù)列,則a1的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知b>0,log5b=a,lgb=c,5d=10,則下列等式一定成立的是(  )
A、d=acB、a=cd
C、c=adD、d=a+c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

當(dāng)m=7,n=3時(shí),執(zhí)行如圖所示的程序框圖,輸出的S的值為( 。
A、7B、42C、210D、840

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=kx-lnx在區(qū)間(1,+∞)單調(diào)遞增,則k的取值范圍是( 。
A、(-∞,-2]
B、(-∞,-1]
C、[2,+∞)
D、[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若x,y滿(mǎn)足
x+y-2≥0
kx-y+2≥0
y≥0
且z=y-x的最小值為-4,則k的值為( 。
A、2
B、-2
C、
1
2
D、-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,某人在垂直于水平地面ABC的墻面前的點(diǎn)A處進(jìn)行射擊訓(xùn)練,已知點(diǎn)A到墻面的距離為AB,某目標(biāo)點(diǎn)P沿墻面上的射線(xiàn)CM移動(dòng),此人為了準(zhǔn)確瞄準(zhǔn)目標(biāo)點(diǎn)P,需計(jì)算由點(diǎn)A觀(guān)察點(diǎn)P的仰角θ的大。ㄑ鼋铅葹橹本(xiàn)AP與平面ABC所成的角).若AB=15m,AC=25m,∠BCM=30°,則tanθ的最大值是(  )
A、
30
5
B、
30
10
C、
4
3
9
D、
5
3
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}滿(mǎn)足:a1=2,且a1,a2,a5成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)記Sn為數(shù)列{an}的前n項(xiàng)和,是否存在正整數(shù)n,使得Sn>60n+800?若存在,求n的最小值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(a+2cos2x)cos(2x+θ)為奇函數(shù),且f(
π
4
)=0,其中a∈R,θ∈(0,π).
(1)求a,θ的值;
(2)若f(
α
4
)=-
2
5
,α∈(
π
2
,π),求sin(α+
π
3
)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案