在△ABC中,角A、B、C對(duì)邊分別為a、b、c,證明:數(shù)學(xué)公式

證明:由余弦定理a2=b2+c2-2bccosA,
b2=a2+c2-2accosB,(3分)
∴a2-b2=b2-a2-2bccosA+2accosB整理得(6分)
依正弦定理,有,(9分)


=(12分)
分析:由余弦定理得到a2,b2的表達(dá)式,兩者作差整理即,再正弦定理將等式右邊的a,b,c換成sinA,sinB,sinC來(lái)表示,逆用正弦的差角公式即可得出結(jié)論.
點(diǎn)評(píng):本小題主要考查三角形的正弦定理、余弦定理等基礎(chǔ)知識(shí),考查三角函數(shù)簡(jiǎn)單的變形技能.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A、B、C所對(duì)的邊分別為a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,則下列關(guān)系一定不成立的是(  )
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,且bsinA=
3
acosB

(1)求角B的大;
(2)若a=4,c=3,D為BC的中點(diǎn),求△ABC的面積及AD的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c并且滿足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C所對(duì)邊的長(zhǎng)分別為a,b,c,且a=
5
,b=3,sinC=2sinA
,則sinA=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案