精英家教網 > 高中數學 > 題目詳情

已知橢圓的焦點F1,F2,短軸長為8,離心率為,過F1的直線交橢圓于A、B兩點,則的周長為( 。

A、10                   B、20                   C、30                   D、40

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知橢圓的焦點F1(-3,0)、F2(3,0),且與直線x-y+9=0有公共點,求其中長軸最短的橢圓方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓的焦點F1(-1,0),F2(1,0),P是橢圓上一點,且|F1F2|是|PF1|,|PF2|等差中項,則橢圓的方程是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓的焦點F1(0,-1),F2(0,1),P為橢圓上一點,且2|F1F2|=|PF1|+|PF2|,則橢圓的方程為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•寶山區(qū)一模)已知橢圓的焦點F1(1,0),F2(-1,0),過P(0,
1
2
)作垂直于y軸的直線被橢圓所截線段長為
6
,過F1作直線l與橢圓交于A、B兩點.
(1)求橢圓的標準方程;
(2)若A是橢圓與y軸負半軸的交點,求△PAB的面積;
(3)是否存在實數t使
PA
+
PB
=t
PF1
,若存在,求t的值和直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓的焦點F1、F2在x軸上,△ABF2的周長為36,頂點A、B在橢圓上,F1在邊AB上,則橢圓的方程可能是(  )

A. +y2=1或+x2=1

B. +=1

C. +=1

D. +y2=1

查看答案和解析>>

同步練習冊答案