【題目】如圖為一個纜車示意圖,該纜車半徑為4.8m,圓上最低點與地面距離為0.8m,60秒轉動一圈,圖中OA與地面垂直,以OA為始邊,逆時針轉動θ角到OB,設B點與地面距離是h.
(1)求h與θ間的函數(shù)關系式;
(2)設從OA開始轉動,經(jīng)過t秒后到達OB,求h與t之間的函數(shù)關系式,并求纜車到達最高點時用的最少時間是多少?
【答案】(1)以圓心O為原點,建立如圖所示的平面直角坐標系,
則以Ox為始邊,OB為終邊的角為θ-,
故點B的坐標為
(4.8cos,4.8sin),
∴h=5.6+4.8sin.
(2)點A在圓上轉動的角速度是,故t秒轉過的弧度數(shù)為t,
∴h=5.6+4.8sin,t∈[0,+∞).
到達最高點時,h=10.4 m.
由sin=1
得t-=,
∴t=30
∴纜車到達最高點時,用的時間最少為30秒
【解析】
(1)建立平面直角坐標系,結合條件求出點的坐標后可得h與θ間的函數(shù)關系式.(2)由t s轉過的弧度數(shù)為可得θ與t的關系,代入(1)中的關系式可得h與t之間的函數(shù)解析式,然后通過最值可得所求的最小時間.
(1)以圓心原點,建立如圖所示的坐標系,如下圖所示,
則以為始邊,為終邊的角為,
故點B坐標為.
∴.
(2)點A在圓上轉動的角速度是,故t s轉過的弧度數(shù)為,
∴,
∴.
令,
得,
∴,
∴.
令,得t=30 s.
∴纜車到達最高點時,用的時間最少為30 s.
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,已知 cosB+ cosA= (I)求∠C的大;
(II)求sinB﹣ sinA的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面為矩形, 是的中點, 是的中點, 是中點.
(1)證明: 平面;
(2)若平面底面, ,試在上找一點,使平面,并證明此結論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=lnx+x+ .
(Ⅰ)若a=﹣2,求曲線y=f(x)在點(1,f(1))處的切線方程;
(Ⅱ)若關于x的不等式f(x)≥a+1在(0,+∞)上恒成立,求a的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某高中生調查了當?shù)啬承^(qū)的50戶居民由于臺風造成的經(jīng)濟損失,將收集的數(shù)據(jù)分成三組,并作出如下頻率分布直方圖:
(1)在直方圖的經(jīng)濟損失分組中,以各組的區(qū)間中點值代表該組的各個值,并以經(jīng)濟損失落入該區(qū)間的頻率作為經(jīng)濟損失取該區(qū)間中點值的概率(例如:經(jīng)濟損失則取,且的概率等于經(jīng)濟損失落入的頻率),F(xiàn)從當?shù)氐木用裰须S機抽出2戶進行捐款援助,設抽出的2戶的經(jīng)濟損失的和為,求的分布列和數(shù)學期望.
(2)臺風后居委會號召小區(qū)居民為臺風重災區(qū)捐款,此高中生調查的50戶居民捐款情況如下表,在表格空白處填寫正確數(shù)字,并說明是否有95%以上的把握認為捐款數(shù)額多于或少于500元和自身經(jīng)濟損失是否到4000元有關?
經(jīng)濟損失不超過4000元 | 經(jīng)濟損失超過4000元 | 合計 | |
捐款超過500元 | 30 | ||
捐款不超過500元 | 6 | ||
合計 |
附:臨界值表參考公式: .
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某小組共10人,利用假期參加義工活動,已知參加義工活動次數(shù)為1,2,3的人數(shù)分別為3,3,4,. 現(xiàn)從這10人中隨機選出2人作為該組代表參加座談會.
(1)設A為事件“選出的2人參加義工活動次數(shù)之和為4”,求事件A發(fā)生的概率;
(2)設 為選出的2人參加義工活動次數(shù)之差的絕對值,求隨機變量 的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的中心為O , 四邊形OBEF為矩形,平面OBEF⊥平面ABCD , 點G為AB的中點,AB=BE=2.
(1)求證:EG∥平面ADF;
(2)求二面角O-EF-C的正弦值;
(3)設H為線段AF上的點,且AH= HF , 求直線BH和平面CEF所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某險種的基本保費為a(單位:元),繼續(xù)購買該險種的投保人稱為續(xù)保人,續(xù)保人的本年度的保費與其上年度的出險次數(shù)的關聯(lián)如下:
上年度出險次數(shù) | 0 | 1 | 2 | 3 | 4 | 5 |
保費 | 0.85a | a | 1.25a | 1.5a | 1.75a | 2a |
設該險種一續(xù)保人一年內出險次數(shù)與相應概率如下:
一年內出險次數(shù) | 0 | 1 | 2 | 3 | 4 | 5 |
概率 | 0.30 | 0.15 | 0.20 | 0.20 | 0.10 | 0. 05 |
(1)求一續(xù)保人本年度的保費高于基本保費的概率;
(2)若一續(xù)保人本年度的保費高于基本保費,求其保費比基本保費高出60%的概率;
(3)求續(xù)保人本年度的平均保費與基本保費的比值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=x +bx,曲線y=f(x)在點 (2,f(2))處的切線方程為y=(e-1)x+4,
(1)求a,b的值;
(2)求f(x)的單調區(qū)間。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com