精英家教網 > 高中數學 > 題目詳情

(本題滿分14分)已知是定義在上的奇函數,當時,

(1)求的解析式;

(2)是否存在負實數,使得當的最小值是4?如果存在,求出的值;如果不存在,請說明理由.

(3)對如果函數的圖像在函數的圖像的下方,則稱函數在D上被函數覆蓋.求證:若時,函數在區(qū)間上被函數覆蓋.

 

【答案】

(1)

 (2)綜上知,存在a=-2e滿足題意;(3)見解析。

【解析】(1)設x∈[-e,0),利用函數為奇函數,得到f(-x)=-f(x),將f(-x)的值代入,求出f(x)在x∈[-e,0)的解析式.

(2)求出f′(x)=0的根,討論根不在定義域內時,函數在定義域上遞增,求出最小值,令最小值等于4,求a;根在定義域內,列出x,f′(x),f(x)d的變化情況表,求出函數的最小值,列出方程求a值.

(3)本小題證明的實質是證明當時,恒成立,然后構造函數

,利用導數求h(x)的最小值,證明其最小值大于零即可.

 

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(本題滿分14分)已知向量 ,,函數.   (Ⅰ)求的單調增區(qū)間;  (II)若在中,角所對的邊分別是,且滿足:,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(本題滿分14分)已知,且以下命題都為真命題:

命題 實系數一元二次方程的兩根都是虛數;

命題 存在復數同時滿足.

求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源:2012-2013學年吉林省高三第一次月考文科數學試卷(解析版) 題型:解答題

(本題滿分14分)已知函數

(1)若,求x的值;

(2)若對于恒成立,求實數m的取值范圍.

 

查看答案和解析>>

科目:高中數學 來源:2010-2011學年廣東省惠州市高三第三次調研考試數學理卷 題型:解答題

(本題滿分14分)

已知橢圓的離心率為,過坐標原點且斜率為的直線相交于、,

⑴求、的值;

⑵若動圓與橢圓和直線都沒有公共點,試求的取值范圍.

 

查看答案和解析>>

科目:高中數學 來源:2010-2011學年廣東省惠州市高三第三次調研考試數學理卷 題型:解答題

((本題滿分14分)

已知梯形ABCD中,AD∥BC,∠ABC =∠BAD =,AB=BC=2AD=4,E、F分別是AB、CD上的點,EF∥BC,AE = x,G是BC的中點.沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF (如圖).

(1)當x=2時,求證:BD⊥EG ;

(2)若以F、B、C、D為頂點的三棱錐的體積記為,

的最大值;

(3)當取得最大值時,求二面角D-BF-C的余弦值.

 

查看答案和解析>>

同步練習冊答案